Package edu.wpi.first.math.estimator
Interface KalmanTypeFilter<States extends Num,Inputs extends Num,Outputs extends Num>
- Type Parameters:
States
- The number of states.Inputs
- The number of inputs.Outputs
- The number of outputs.
- All Known Implementing Classes:
ExtendedKalmanFilter
,KalmanFilter
,UnscentedKalmanFilter
public interface KalmanTypeFilter<States extends Num,Inputs extends Num,Outputs extends Num>
Interface for Kalman filters for use with KalmanFilterLatencyCompensator.
-
Method Summary
Modifier and TypeMethodDescriptionvoid
Correct the state estimate x-hat using the measurements in y.getP()
Returns the error covariance matrix.double
getP
(int i, int j) Returns an element of the error covariance matrix.getXhat()
Returns the state estimate.double
getXhat
(int i) Returns an element of the state estimate.void
Project the model into the future with a new control input u.void
reset()
Resets the observer.void
Sets the error covariance matrix.void
setXhat
(int i, double value) Sets an element of the state estimate.void
Sets the state estimate.
-
Method Details
-
getP
Returns the error covariance matrix.- Returns:
- The error covariance matrix.
-
getP
Returns an element of the error covariance matrix.- Parameters:
i
- The row.j
- The column.- Returns:
- An element of the error covariance matrix.
-
setP
Sets the error covariance matrix.- Parameters:
newP
- The error covariance matrix.
-
getXhat
Returns the state estimate.- Returns:
- The state estimate.
-
getXhat
Returns an element of the state estimate.- Parameters:
i
- The row.- Returns:
- An element of the state estimate.
-
setXhat
Sets the state estimate.- Parameters:
xHat
- The state estimate.
-
setXhat
Sets an element of the state estimate.- Parameters:
i
- The row.value
- The value.
-
reset
void reset()Resets the observer. -
predict
Project the model into the future with a new control input u.- Parameters:
u
- New control input from controller.dtSeconds
- Timestep for prediction.
-
correct
Correct the state estimate x-hat using the measurements in y.- Parameters:
u
- Same control input used in the predict step.y
- Measurement vector.
-