Class Discretization

java.lang.Object
edu.wpi.first.math.system.Discretization

public final class Discretization extends Object
Discretization helper functions.
  • Method Details

    • discretizeA

      public static <States extends Num> Matrix<States,States> discretizeA(Matrix<States,States> contA, double dtSeconds)
      Discretizes the given continuous A matrix.
      Type Parameters:
      States - Num representing the number of states.
      Parameters:
      contA - Continuous system matrix.
      dtSeconds - Discretization timestep.
      Returns:
      the discrete matrix system.
    • discretizeAB

      public static <States extends Num, Inputs extends Num> Pair<Matrix<States,States>,Matrix<States,Inputs>> discretizeAB(Matrix<States,States> contA, Matrix<States,Inputs> contB, double dtSeconds)
      Discretizes the given continuous A and B matrices.
      Type Parameters:
      States - Nat representing the states of the system.
      Inputs - Nat representing the inputs to the system.
      Parameters:
      contA - Continuous system matrix.
      contB - Continuous input matrix.
      dtSeconds - Discretization timestep.
      Returns:
      a Pair representing discA and diskB.
    • discretizeAQ

      public static <States extends Num> Pair<Matrix<States,States>,Matrix<States,States>> discretizeAQ(Matrix<States,States> contA, Matrix<States,States> contQ, double dtSeconds)
      Discretizes the given continuous A and Q matrices.
      Type Parameters:
      States - Nat representing the number of states.
      Parameters:
      contA - Continuous system matrix.
      contQ - Continuous process noise covariance matrix.
      dtSeconds - Discretization timestep.
      Returns:
      a pair representing the discrete system matrix and process noise covariance matrix.
    • discretizeR

      public static <O extends Num> Matrix<O,O> discretizeR(Matrix<O,O> contR, double dtSeconds)
      Returns a discretized version of the provided continuous measurement noise covariance matrix. Note that dt=0.0 divides R by zero.
      Type Parameters:
      O - Nat representing the number of outputs.
      Parameters:
      contR - Continuous measurement noise covariance matrix.
      dtSeconds - Discretization timestep.
      Returns:
      Discretized version of the provided continuous measurement noise covariance matrix.