WPILibC++ 2024.3.2
Eigen::internal::matrix_exp_computeUV< MatrixType, RealScalar > Struct Template Reference

Compute the (17,17)-Padé approximant to the exponential. More...

#include </home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h>

## Static Public Member Functions

static void run (const MatrixType &arg, MatrixType &U, MatrixType &V, int &squarings)
Compute Padé approximant to the exponential. More...

## Detailed Description

template<typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
struct Eigen::internal::matrix_exp_computeUV< MatrixType, RealScalar >

Compute the (17,17)-Padé approximant to the exponential.

After exit, $$(V+U)(V-U)^{-1}$$ is the Padé approximant of $$\exp(A)$$ around $$A = 0$$.

This function activates only if your long double is double-double or quadruple.

## ◆ run()

template<typename MatrixType , typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
 static void Eigen::internal::matrix_exp_computeUV< MatrixType, RealScalar >::run ( const MatrixType & arg, MatrixType & U, MatrixType & V, int & squarings )
static

Compute Padé approximant to the exponential.

Computes U, V and squarings such that $$(V+U)(V-U)^{-1}$$ is a Padé approximant of $$\exp(2^{-\mbox{squarings}}M)$$ around $$M = 0$$, where $$M$$ denotes the matrix arg. The degree of the Padé approximant and the value of squarings are chosen such that the approximation error is no more than the round-off error.

The documentation for this struct was generated from the following file:
• /home/runner/work/allwpilib/allwpilib/wpimath/src/main/native/thirdparty/eigen/include/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h