63T
RK4(F&& f, units::second_t t, T y, units::second_t dt) {
64 const auto h = dt.to<
double>();
67 T k2 = f(t + dt * 0.5, y + h * k1 * 0.5);
68 T k3 = f(t + dt * 0.5, y + h * k2 * 0.5);
69 T k4 = f(t + dt, y + h * k3);
71 return y + h / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
86T
RKDP(F&& f, T x, U u, units::second_t dt,
double maxError = 1e-6) {
90 constexpr int kDim = 7;
93 constexpr double A[kDim - 1][kDim - 1]{
95 { 3.0 / 40.0, 9.0 / 40.0},
96 { 44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0},
97 {19372.0 / 6561.0, -25360.0 / 2187.0, 64448.0 / 6561.0, -212.0 / 729.0},
98 { 9017.0 / 3168.0, -355.0 / 33.0, 46732.0 / 5247.0, 49.0 / 176.0, -5103.0 / 18656.0},
99 { 35.0 / 384.0, 0.0, 500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0, 11.0 / 84.0}};
102 constexpr std::array<double, kDim> b1{
103 35.0 / 384.0, 0.0, 500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0,
105 constexpr std::array<double, kDim> b2{5179.0 / 57600.0, 0.0,
106 7571.0 / 16695.0, 393.0 / 640.0,
107 -92097.0 / 339200.0, 187.0 / 2100.0,
111 double truncationError;
113 double dtElapsed = 0.0;
114 double h = dt.value();
117 while (dtElapsed < dt.value()) {
120 h = (std::min)(h, dt.value() - dtElapsed);
124 T k2 = f(x + h * (A[0][0] * k1), u);
125 T k3 = f(x + h * (A[1][0] * k1 + A[1][1] * k2), u);
126 T k4 = f(x + h * (A[2][0] * k1 + A[2][1] * k2 + A[2][2] * k3), u);
127 T k5 = f(x + h * (A[3][0] * k1 + A[3][1] * k2 + A[3][2] * k3 + A[3][3] * k4), u);
128 T k6 = f(x + h * (A[4][0] * k1 + A[4][1] * k2 + A[4][2] * k3 + A[4][3] * k4 + A[4][4] * k5), u);
133 newX = x + h * (A[5][0] * k1 + A[5][1] * k2 + A[5][2] * k3 +
134 A[5][3] * k4 + A[5][4] * k5 + A[5][5] * k6);
137 truncationError = (h * ((b1[0] - b2[0]) * k1 + (b1[1] - b2[1]) * k2 +
138 (b1[2] - b2[2]) * k3 + (b1[3] - b2[3]) * k4 +
139 (b1[4] - b2[4]) * k5 + (b1[5] - b2[5]) * k6 +
140 (b1[6] - b2[6]) * k7))
143 if (truncationError == 0.0) {
144 h = dt.value() - dtElapsed;
146 h *= 0.9 * std::pow(maxError / truncationError, 1.0 / 5.0);
148 }
while (truncationError > maxError);
169T
RKDP(F&& f, units::second_t t, T y, units::second_t dt,
170 double maxError = 1e-6) {
174 constexpr int kDim = 7;
177 constexpr double A[kDim - 1][kDim - 1]{
179 { 3.0 / 40.0, 9.0 / 40.0},
180 { 44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0},
181 {19372.0 / 6561.0, -25360.0 / 2187.0, 64448.0 / 6561.0, -212.0 / 729.0},
182 { 9017.0 / 3168.0, -355.0 / 33.0, 46732.0 / 5247.0, 49.0 / 176.0, -5103.0 / 18656.0},
183 { 35.0 / 384.0, 0.0, 500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0, 11.0 / 84.0}};
186 constexpr std::array<double, kDim> b1{
187 35.0 / 384.0, 0.0, 500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0,
189 constexpr std::array<double, kDim> b2{5179.0 / 57600.0, 0.0,
190 7571.0 / 16695.0, 393.0 / 640.0,
191 -92097.0 / 339200.0, 187.0 / 2100.0,
194 constexpr std::array<double, kDim - 1> c{1.0 / 5.0, 3.0 / 10.0, 4.0 / 5.0,
195 8.0 / 9.0, 1.0, 1.0};
198 double truncationError;
200 double dtElapsed = 0.0;
201 double h = dt.to<
double>();
204 while (dtElapsed < dt.to<
double>()) {
207 h = std::min(h, dt.to<
double>() - dtElapsed);
211 T k2 = f(t + units::second_t{h} * c[0], y + h * (A[0][0] * k1));
212 T k3 = f(t + units::second_t{h} * c[1], y + h * (A[1][0] * k1 + A[1][1] * k2));
213 T k4 = f(t + units::second_t{h} * c[2], y + h * (A[2][0] * k1 + A[2][1] * k2 + A[2][2] * k3));
214 T k5 = f(t + units::second_t{h} * c[3], y + h * (A[3][0] * k1 + A[3][1] * k2 + A[3][2] * k3 + A[3][3] * k4));
215 T k6 = f(t + units::second_t{h} * c[4], y + h * (A[4][0] * k1 + A[4][1] * k2 + A[4][2] * k3 + A[4][3] * k4 + A[4][4] * k5));
220 newY = y + h * (A[5][0] * k1 + A[5][1] * k2 + A[5][2] * k3 +
221 A[5][3] * k4 + A[5][4] * k5 + A[5][5] * k6);
222 T k7 = f(t + units::second_t{h} * c[5], newY);
224 truncationError = (h * ((b1[0] - b2[0]) * k1 + (b1[1] - b2[1]) * k2 +
225 (b1[2] - b2[2]) * k3 + (b1[3] - b2[3]) * k4 +
226 (b1[4] - b2[4]) * k5 + (b1[5] - b2[5]) * k6 +
227 (b1[6] - b2[6]) * k7))
230 h *= 0.9 * std::pow(maxError / truncationError, 1.0 / 5.0);
231 }
while (truncationError > maxError);
T RK4(F &&f, T x, units::second_t dt)
Performs 4th order Runge-Kutta integration of dx/dt = f(x) for dt.
Definition NumericalIntegration.h:23
T RKDP(F &&f, T x, U u, units::second_t dt, double maxError=1e-6)
Performs adaptive Dormand-Prince integration of dx/dt = f(x, u) for dt.
Definition NumericalIntegration.h:86