Class Net

java.lang.Object
org.opencv.dnn.Net

public class Net
extends Object
This class allows to create and manipulate comprehensive artificial neural networks. Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, and edges specify relationships between layers inputs and outputs. Each network layer has unique integer id and unique string name inside its network. LayerId can store either layer name or layer id. This class supports reference counting of its instances, i. e. copies point to the same instance.
  • Field Details

  • Constructor Details

  • Method Details

    • getNativeObjAddr

      public long getNativeObjAddr()
    • __fromPtr__

      public static Net __fromPtr__​(long addr)
    • readFromModelOptimizer

      public static Net readFromModelOptimizer​(String xml, String bin)
      Create a network from Intel's Model Optimizer intermediate representation (IR).
      Parameters:
      xml - XML configuration file with network's topology.
      bin - Binary file with trained weights. Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine backend.
      Returns:
      automatically generated
    • readFromModelOptimizer

      public static Net readFromModelOptimizer​(MatOfByte bufferModelConfig, MatOfByte bufferWeights)
      Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
      Parameters:
      bufferModelConfig - buffer with model's configuration.
      bufferWeights - buffer with model's trained weights.
      Returns:
      Net object.
    • empty

      public boolean empty()
      Returns true if there are no layers in the network.
      Returns:
      automatically generated
    • dump

      public String dump()
      Dump net to String
      Returns:
      String with structure, hyperparameters, backend, target and fusion Call method after setInput(). To see correct backend, target and fusion run after forward().
    • dumpToFile

      public void dumpToFile​(String path)
      Dump net structure, hyperparameters, backend, target and fusion to dot file
      Parameters:
      path - path to output file with .dot extension SEE: dump()
    • getLayerId

      public int getLayerId​(String layer)
      Converts string name of the layer to the integer identifier.
      Parameters:
      layer - automatically generated
      Returns:
      id of the layer, or -1 if the layer wasn't found.
    • getLayerNames

    • getLayer

      public Layer getLayer​(int layerId)
      Returns pointer to layer with specified id or name which the network use.
      Parameters:
      layerId - automatically generated
      Returns:
      automatically generated
    • getLayer

      @Deprecated public Layer getLayer​(String layerName)
      Deprecated.
      Use int getLayerId(const String &layer)
      Parameters:
      layerName - automatically generated
      Returns:
      automatically generated
    • getLayer

      @Deprecated public Layer getLayer​(DictValue layerId)
      Deprecated.
      to be removed
      Parameters:
      layerId - automatically generated
      Returns:
      automatically generated
    • connect

      public void connect​(String outPin, String inpPin)
      Connects output of the first layer to input of the second layer.
      Parameters:
      outPin - descriptor of the first layer output.
      inpPin - descriptor of the second layer input. Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>: - the first part of the template <DFN>layer_name</DFN> is string name of the added layer. If this part is empty then the network input pseudo layer will be used; - the second optional part of the template <DFN>input_number</DFN> is either number of the layer input, either label one. If this part is omitted then the first layer input will be used. SEE: setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
    • setInputsNames

      public void setInputsNames​(List<String> inputBlobNames)
      Sets outputs names of the network input pseudo layer. Each net always has special own the network input pseudo layer with id=0. This layer stores the user blobs only and don't make any computations. In fact, this layer provides the only way to pass user data into the network. As any other layer, this layer can label its outputs and this function provides an easy way to do this.
      Parameters:
      inputBlobNames - automatically generated
    • setInputShape

      public void setInputShape​(String inputName, MatOfInt shape)
      Specify shape of network input.
      Parameters:
      inputName - automatically generated
      shape - automatically generated
    • forward

      public Mat forward​(String outputName)
      Runs forward pass to compute output of layer with name outputName.
      Parameters:
      outputName - name for layer which output is needed to get
      Returns:
      blob for first output of specified layer. By default runs forward pass for the whole network.
    • forward

      public Mat forward()
      Runs forward pass to compute output of layer with name outputName.
      Returns:
      blob for first output of specified layer. By default runs forward pass for the whole network.
    • forward

      public void forward​(List<Mat> outputBlobs, String outputName)
      Runs forward pass to compute output of layer with name outputName.
      Parameters:
      outputBlobs - contains all output blobs for specified layer.
      outputName - name for layer which output is needed to get If outputName is empty, runs forward pass for the whole network.
    • forward

      public void forward​(List<Mat> outputBlobs)
      Runs forward pass to compute output of layer with name outputName.
      Parameters:
      outputBlobs - contains all output blobs for specified layer. If outputName is empty, runs forward pass for the whole network.
    • forward

      public void forward​(List<Mat> outputBlobs, List<String> outBlobNames)
      Runs forward pass to compute outputs of layers listed in outBlobNames.
      Parameters:
      outputBlobs - contains blobs for first outputs of specified layers.
      outBlobNames - names for layers which outputs are needed to get
    • quantize

      public Net quantize​(List<Mat> calibData, int inputsDtype, int outputsDtype, boolean perChannel)
      Returns a quantized Net from a floating-point Net.
      Parameters:
      calibData - Calibration data to compute the quantization parameters.
      inputsDtype - Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
      outputsDtype - Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
      perChannel - Quantization granularity of quantized Net. The default is true, that means quantize model in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).
      Returns:
      automatically generated
    • quantize

      public Net quantize​(List<Mat> calibData, int inputsDtype, int outputsDtype)
      Returns a quantized Net from a floating-point Net.
      Parameters:
      calibData - Calibration data to compute the quantization parameters.
      inputsDtype - Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
      outputsDtype - Datatype of quantized net's outputs. Can be CV_32F or CV_8S. in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).
      Returns:
      automatically generated
    • getInputDetails

      public void getInputDetails​(MatOfFloat scales, MatOfInt zeropoints)
      Returns input scale and zeropoint for a quantized Net.
      Parameters:
      scales - output parameter for returning input scales.
      zeropoints - output parameter for returning input zeropoints.
    • getOutputDetails

      public void getOutputDetails​(MatOfFloat scales, MatOfInt zeropoints)
      Returns output scale and zeropoint for a quantized Net.
      Parameters:
      scales - output parameter for returning output scales.
      zeropoints - output parameter for returning output zeropoints.
    • setHalideScheduler

      public void setHalideScheduler​(String scheduler)
      Compile Halide layers.
      Parameters:
      scheduler - Path to YAML file with scheduling directives. SEE: setPreferableBackend Schedule layers that support Halide backend. Then compile them for specific target. For layers that not represented in scheduling file or if no manual scheduling used at all, automatic scheduling will be applied.
    • setPreferableBackend

      public void setPreferableBackend​(int backendId)
      Ask network to use specific computation backend where it supported.
      Parameters:
      backendId - backend identifier. SEE: Backend If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
    • setPreferableTarget

      public void setPreferableTarget​(int targetId)
      Ask network to make computations on specific target device.
      Parameters:
      targetId - target identifier. SEE: Target List of supported combinations backend / target: | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA | |------------------------|--------------------|------------------------------|--------------------|-------------------| | DNN_TARGET_CPU | + | + | + | | | DNN_TARGET_OPENCL | + | + | + | | | DNN_TARGET_OPENCL_FP16 | + | + | | | | DNN_TARGET_MYRIAD | | + | | | | DNN_TARGET_FPGA | | + | | | | DNN_TARGET_CUDA | | | | + | | DNN_TARGET_CUDA_FP16 | | | | + | | DNN_TARGET_HDDL | | + | | |
    • setInput

      public void setInput​(Mat blob, String name, double scalefactor, Scalar mean)
      Sets the new input value for the network
      Parameters:
      blob - A new blob. Should have CV_32F or CV_8U depth.
      name - A name of input layer.
      scalefactor - An optional normalization scale.
      mean - An optional mean subtraction values. SEE: connect(String, String) to know format of the descriptor. If scale or mean values are specified, a final input blob is computed as: \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\)
    • setInput

      public void setInput​(Mat blob, String name, double scalefactor)
      Sets the new input value for the network
      Parameters:
      blob - A new blob. Should have CV_32F or CV_8U depth.
      name - A name of input layer.
      scalefactor - An optional normalization scale. SEE: connect(String, String) to know format of the descriptor. If scale or mean values are specified, a final input blob is computed as: \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\)
    • setInput

      public void setInput​(Mat blob, String name)
      Sets the new input value for the network
      Parameters:
      blob - A new blob. Should have CV_32F or CV_8U depth.
      name - A name of input layer. SEE: connect(String, String) to know format of the descriptor. If scale or mean values are specified, a final input blob is computed as: \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\)
    • setInput

      public void setInput​(Mat blob)
      Sets the new input value for the network
      Parameters:
      blob - A new blob. Should have CV_32F or CV_8U depth. SEE: connect(String, String) to know format of the descriptor. If scale or mean values are specified, a final input blob is computed as: \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\)
    • setParam

      public void setParam​(int layer, int numParam, Mat blob)
      Sets the new value for the learned param of the layer.
      Parameters:
      layer - name or id of the layer.
      numParam - index of the layer parameter in the Layer::blobs array.
      blob - the new value. SEE: Layer::blobs Note: If shape of the new blob differs from the previous shape, then the following forward pass may fail.
    • setParam

      public void setParam​(String layerName, int numParam, Mat blob)
    • getParam

      public Mat getParam​(int layer, int numParam)
      Returns parameter blob of the layer.
      Parameters:
      layer - name or id of the layer.
      numParam - index of the layer parameter in the Layer::blobs array. SEE: Layer::blobs
      Returns:
      automatically generated
    • getParam

      public Mat getParam​(int layer)
      Returns parameter blob of the layer.
      Parameters:
      layer - name or id of the layer. SEE: Layer::blobs
      Returns:
      automatically generated
    • getParam

      public Mat getParam​(String layerName, int numParam)
    • getParam

      public Mat getParam​(String layerName)
    • getUnconnectedOutLayers

      Returns indexes of layers with unconnected outputs. FIXIT: Rework API to registerOutput() approach, deprecate this call
      Returns:
      automatically generated
    • getUnconnectedOutLayersNames

      Returns names of layers with unconnected outputs. FIXIT: Rework API to registerOutput() approach, deprecate this call
      Returns:
      automatically generated
    • getFLOPS

      public long getFLOPS​(List<MatOfInt> netInputShapes)
      Computes FLOP for whole loaded model with specified input shapes.
      Parameters:
      netInputShapes - vector of shapes for all net inputs.
      Returns:
      computed FLOP.
    • getFLOPS

      public long getFLOPS​(MatOfInt netInputShape)
    • getFLOPS

      public long getFLOPS​(int layerId, List<MatOfInt> netInputShapes)
    • getFLOPS

      public long getFLOPS​(int layerId, MatOfInt netInputShape)
    • getLayerTypes

      public void getLayerTypes​(List<String> layersTypes)
      Returns list of types for layer used in model.
      Parameters:
      layersTypes - output parameter for returning types.
    • getLayersCount

      public int getLayersCount​(String layerType)
      Returns count of layers of specified type.
      Parameters:
      layerType - type.
      Returns:
      count of layers
    • getMemoryConsumption

      public void getMemoryConsumption​(MatOfInt netInputShape, long[] weights, long[] blobs)
    • getMemoryConsumption

      public void getMemoryConsumption​(int layerId, List<MatOfInt> netInputShapes, long[] weights, long[] blobs)
    • getMemoryConsumption

      public void getMemoryConsumption​(int layerId, MatOfInt netInputShape, long[] weights, long[] blobs)
    • enableFusion

      public void enableFusion​(boolean fusion)
      Enables or disables layer fusion in the network.
      Parameters:
      fusion - true to enable the fusion, false to disable. The fusion is enabled by default.
    • enableWinograd

      public void enableWinograd​(boolean useWinograd)
      Enables or disables the Winograd compute branch. The Winograd compute branch can speed up 3x3 Convolution at a small loss of accuracy.
      Parameters:
      useWinograd - true to enable the Winograd compute branch. The default is true.
    • getPerfProfile

      public long getPerfProfile​(MatOfDouble timings)
      Returns overall time for inference and timings (in ticks) for layers. Indexes in returned vector correspond to layers ids. Some layers can be fused with others, in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
      Parameters:
      timings - vector for tick timings for all layers.
      Returns:
      overall ticks for model inference.
    • finalize

      protected void finalize() throws Throwable
      Overrides:
      finalize in class Object
      Throws:
      Throwable