001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.wpilibj; 006 007import static edu.wpi.first.util.ErrorMessages.requireNonNullParam; 008 009import edu.wpi.first.hal.FRCNetComm.tResourceType; 010import edu.wpi.first.hal.HAL; 011import edu.wpi.first.hal.SimBoolean; 012import edu.wpi.first.hal.SimDevice; 013import edu.wpi.first.hal.SimDevice.Direction; 014import edu.wpi.first.hal.SimDouble; 015import edu.wpi.first.util.sendable.Sendable; 016import edu.wpi.first.util.sendable.SendableBuilder; 017import edu.wpi.first.util.sendable.SendableRegistry; 018import java.util.ArrayList; 019import java.util.List; 020 021/** 022 * Ultrasonic rangefinder class. The Ultrasonic rangefinder measures absolute distance based on the 023 * round-trip time of a ping generated by the controller. These sensors use two transducers, a 024 * speaker and a microphone both tuned to the ultrasonic range. A common ultrasonic sensor, the 025 * Daventech SRF04 requires a short pulse to be generated on a digital channel. This causes the 026 * chirp to be emitted. A second line becomes high as the ping is transmitted and goes low when the 027 * echo is received. The time that the line is high determines the round trip distance (time of 028 * flight). 029 */ 030public class Ultrasonic implements Sendable, AutoCloseable { 031 // Time (sec) for the ping trigger pulse. 032 private static final double kPingTime = 10 * 1e-6; 033 private static final double kSpeedOfSoundInchesPerSec = 1130.0 * 12.0; 034 // ultrasonic sensor list 035 private static final List<Ultrasonic> m_sensors = new ArrayList<>(); 036 // automatic round robin mode 037 private static volatile boolean m_automaticEnabled; 038 private DigitalInput m_echoChannel; 039 private DigitalOutput m_pingChannel; 040 private final boolean m_allocatedChannels; 041 private boolean m_enabled; 042 private Counter m_counter; 043 // task doing the round-robin automatic sensing 044 private static Thread m_task; 045 private static int m_instances; 046 047 private SimDevice m_simDevice; 048 private SimBoolean m_simRangeValid; 049 private SimDouble m_simRange; 050 051 /** 052 * Background task that goes through the list of ultrasonic sensors and pings each one in turn. 053 * The counter is configured to read the timing of the returned echo pulse. 054 * 055 * <p><b>DANGER WILL ROBINSON, DANGER WILL ROBINSON:</b> This code runs as a task and assumes that 056 * none of the ultrasonic sensors will change while it's running. If one does, then this will 057 * certainly break. Make sure to disable automatic mode before changing anything with the 058 * sensors!! 059 */ 060 private static class UltrasonicChecker extends Thread { 061 @Override 062 public synchronized void run() { 063 while (m_automaticEnabled) { 064 for (Ultrasonic sensor : m_sensors) { 065 if (!m_automaticEnabled) { 066 break; 067 } 068 069 if (sensor.isEnabled()) { 070 sensor.m_pingChannel.pulse(kPingTime); // do the ping 071 } 072 073 Timer.delay(0.1); // wait for ping to return 074 } 075 } 076 } 077 } 078 079 /** 080 * Initialize the Ultrasonic Sensor. This is the common code that initializes the ultrasonic 081 * sensor given that there are two digital I/O channels allocated. If the system was running in 082 * automatic mode (round-robin) when the new sensor is added, it is stopped, the sensor is added, 083 * then automatic mode is restored. 084 */ 085 private synchronized void initialize() { 086 m_simDevice = SimDevice.create("Ultrasonic", m_echoChannel.getChannel()); 087 if (m_simDevice != null) { 088 m_simRangeValid = m_simDevice.createBoolean("Range Valid", Direction.kInput, true); 089 m_simRange = m_simDevice.createDouble("Range (in)", Direction.kInput, 0.0); 090 m_pingChannel.setSimDevice(m_simDevice); 091 m_echoChannel.setSimDevice(m_simDevice); 092 } 093 final boolean originalMode = m_automaticEnabled; 094 setAutomaticMode(false); // kill task when adding a new sensor 095 m_sensors.add(this); 096 097 m_counter = new Counter(m_echoChannel); // set up counter for this 098 SendableRegistry.addChild(this, m_counter); 099 // sensor 100 m_counter.setMaxPeriod(1.0); 101 m_counter.setSemiPeriodMode(true); 102 m_counter.reset(); 103 m_enabled = true; // make it available for round-robin scheduling 104 setAutomaticMode(originalMode); 105 106 m_instances++; 107 HAL.report(tResourceType.kResourceType_Ultrasonic, m_instances); 108 SendableRegistry.addLW(this, "Ultrasonic", m_echoChannel.getChannel()); 109 } 110 111 /** 112 * Returns the echo channel. 113 * 114 * @return The echo channel. 115 */ 116 public int getEchoChannel() { 117 return m_echoChannel.getChannel(); 118 } 119 120 /** 121 * Create an instance of the Ultrasonic Sensor. This is designed to support the Daventech SRF04 122 * and Vex ultrasonic sensors. 123 * 124 * @param pingChannel The digital output channel that sends the pulse to initiate the sensor 125 * sending the ping. 126 * @param echoChannel The digital input channel that receives the echo. The length of time that 127 * the echo is high represents the round trip time of the ping, and the distance. 128 */ 129 @SuppressWarnings("this-escape") 130 public Ultrasonic(final int pingChannel, final int echoChannel) { 131 m_pingChannel = new DigitalOutput(pingChannel); 132 m_echoChannel = new DigitalInput(echoChannel); 133 SendableRegistry.addChild(this, m_pingChannel); 134 SendableRegistry.addChild(this, m_echoChannel); 135 m_allocatedChannels = true; 136 initialize(); 137 } 138 139 /** 140 * Create an instance of an Ultrasonic Sensor from a DigitalInput for the echo channel and a 141 * DigitalOutput for the ping channel. 142 * 143 * @param pingChannel The digital output object that starts the sensor doing a ping. Requires a 144 * 10uS pulse to start. 145 * @param echoChannel The digital input object that times the return pulse to determine the range. 146 */ 147 @SuppressWarnings("this-escape") 148 public Ultrasonic(DigitalOutput pingChannel, DigitalInput echoChannel) { 149 requireNonNullParam(pingChannel, "pingChannel", "Ultrasonic"); 150 requireNonNullParam(echoChannel, "echoChannel", "Ultrasonic"); 151 152 m_allocatedChannels = false; 153 m_pingChannel = pingChannel; 154 m_echoChannel = echoChannel; 155 initialize(); 156 } 157 158 /** 159 * Destructor for the ultrasonic sensor. Delete the instance of the ultrasonic sensor by freeing 160 * the allocated digital channels. If the system was in automatic mode (round-robin), then it is 161 * stopped, then started again after this sensor is removed (provided this wasn't the last 162 * sensor). 163 */ 164 @Override 165 public synchronized void close() { 166 SendableRegistry.remove(this); 167 final boolean wasAutomaticMode = m_automaticEnabled; 168 setAutomaticMode(false); 169 if (m_allocatedChannels) { 170 if (m_pingChannel != null) { 171 m_pingChannel.close(); 172 } 173 if (m_echoChannel != null) { 174 m_echoChannel.close(); 175 } 176 } 177 178 if (m_counter != null) { 179 m_counter.close(); 180 m_counter = null; 181 } 182 183 m_pingChannel = null; 184 m_echoChannel = null; 185 synchronized (m_sensors) { 186 m_sensors.remove(this); 187 } 188 if (!m_sensors.isEmpty() && wasAutomaticMode) { 189 setAutomaticMode(true); 190 } 191 192 if (m_simDevice != null) { 193 m_simDevice.close(); 194 m_simDevice = null; 195 } 196 } 197 198 /** 199 * Turn Automatic mode on/off for all sensors. 200 * 201 * <p>When in Automatic mode, all sensors will fire in round-robin, waiting a set time between 202 * each sensor. 203 * 204 * @param enabling Set to true if round-robin scheduling should start for all the ultrasonic 205 * sensors. This scheduling method assures that the sensors are non-interfering because no two 206 * sensors fire at the same time. If another scheduling algorithm is preferred, it can be 207 * implemented by pinging the sensors manually and waiting for the results to come back. 208 */ 209 public static synchronized void setAutomaticMode(boolean enabling) { 210 if (enabling == m_automaticEnabled) { 211 return; // ignore the case of no change 212 } 213 m_automaticEnabled = enabling; 214 215 if (enabling) { 216 /* Clear all the counters so no data is valid. No synchronization is 217 * needed because the background task is stopped. 218 */ 219 for (Ultrasonic u : m_sensors) { 220 u.m_counter.reset(); 221 } 222 223 // Start round robin task 224 m_task = new UltrasonicChecker(); 225 m_task.start(); 226 } else { 227 if (m_task != null) { 228 // Wait for background task to stop running 229 try { 230 m_task.join(); 231 m_task = null; 232 } catch (InterruptedException ex) { 233 Thread.currentThread().interrupt(); 234 ex.printStackTrace(); 235 } 236 } 237 238 /* Clear all the counters (data now invalid) since automatic mode is 239 * disabled. No synchronization is needed because the background task is 240 * stopped. 241 */ 242 for (Ultrasonic u : m_sensors) { 243 u.m_counter.reset(); 244 } 245 } 246 } 247 248 /** 249 * Single ping to ultrasonic sensor. Send out a single ping to the ultrasonic sensor. This only 250 * works if automatic (round-robin) mode is disabled. A single ping is sent out, and the counter 251 * should count the semi-period when it comes in. The counter is reset to make the current value 252 * invalid. 253 */ 254 public void ping() { 255 setAutomaticMode(false); // turn off automatic round-robin if pinging 256 // single sensor 257 m_counter.reset(); // reset the counter to zero (invalid data now) 258 // do the ping to start getting a single range 259 m_pingChannel.pulse(kPingTime); 260 } 261 262 /** 263 * Check if there is a valid range measurement. The ranges are accumulated in a counter that will 264 * increment on each edge of the echo (return) signal. If the count is not at least 2, then the 265 * range has not yet been measured, and is invalid. 266 * 267 * @return true if the range is valid 268 */ 269 public boolean isRangeValid() { 270 if (m_simRangeValid != null) { 271 return m_simRangeValid.get(); 272 } 273 return m_counter.get() > 1; 274 } 275 276 /** 277 * Get the range in inches from the ultrasonic sensor. If there is no valid value yet, i.e. at 278 * least one measurement hasn't completed, then return 0. 279 * 280 * @return double Range in inches of the target returned from the ultrasonic sensor. 281 */ 282 public double getRangeInches() { 283 if (isRangeValid()) { 284 if (m_simRange != null) { 285 return m_simRange.get(); 286 } 287 return m_counter.getPeriod() * kSpeedOfSoundInchesPerSec / 2.0; 288 } else { 289 return 0; 290 } 291 } 292 293 /** 294 * Get the range in millimeters from the ultrasonic sensor. If there is no valid value yet, i.e. 295 * at least one measurement hasn't completed, then return 0. 296 * 297 * @return double Range in millimeters of the target returned by the ultrasonic sensor. 298 */ 299 public double getRangeMM() { 300 return getRangeInches() * 25.4; 301 } 302 303 /** 304 * Is the ultrasonic enabled. 305 * 306 * @return true if the ultrasonic is enabled 307 */ 308 public boolean isEnabled() { 309 return m_enabled; 310 } 311 312 /** 313 * Set if the ultrasonic is enabled. 314 * 315 * @param enable set to true to enable the ultrasonic 316 */ 317 public void setEnabled(boolean enable) { 318 m_enabled = enable; 319 } 320 321 @Override 322 public void initSendable(SendableBuilder builder) { 323 builder.setSmartDashboardType("Ultrasonic"); 324 builder.addDoubleProperty("Value", this::getRangeInches, null); 325 } 326}