001// Copyright (c) FIRST and other WPILib contributors.
002// Open Source Software; you can modify and/or share it under the terms of
003// the WPILib BSD license file in the root directory of this project.
004
005package edu.wpi.first.wpilibj;
006
007import static edu.wpi.first.util.ErrorMessages.requireNonNullParam;
008
009import edu.wpi.first.hal.FRCNetComm.tResourceType;
010import edu.wpi.first.hal.HAL;
011import edu.wpi.first.hal.SimBoolean;
012import edu.wpi.first.hal.SimDevice;
013import edu.wpi.first.hal.SimDevice.Direction;
014import edu.wpi.first.hal.SimDouble;
015import edu.wpi.first.util.sendable.Sendable;
016import edu.wpi.first.util.sendable.SendableBuilder;
017import edu.wpi.first.util.sendable.SendableRegistry;
018import java.util.ArrayList;
019import java.util.List;
020
021/**
022 * Ultrasonic rangefinder class. The Ultrasonic rangefinder measures absolute distance based on the
023 * round-trip time of a ping generated by the controller. These sensors use two transducers, a
024 * speaker and a microphone both tuned to the ultrasonic range. A common ultrasonic sensor, the
025 * Daventech SRF04 requires a short pulse to be generated on a digital channel. This causes the
026 * chirp to be emitted. A second line becomes high as the ping is transmitted and goes low when the
027 * echo is received. The time that the line is high determines the round trip distance (time of
028 * flight).
029 */
030public class Ultrasonic implements Sendable, AutoCloseable {
031  // Time (sec) for the ping trigger pulse.
032  private static final double kPingTime = 10 * 1e-6;
033  private static final double kSpeedOfSoundInchesPerSec = 1130.0 * 12.0;
034  // ultrasonic sensor list
035  private static final List<Ultrasonic> m_sensors = new ArrayList<>();
036  // automatic round robin mode
037  private static volatile boolean m_automaticEnabled;
038  private DigitalInput m_echoChannel;
039  private DigitalOutput m_pingChannel;
040  private final boolean m_allocatedChannels;
041  private boolean m_enabled;
042  private Counter m_counter;
043  // task doing the round-robin automatic sensing
044  private static Thread m_task;
045  private static int m_instances;
046
047  private SimDevice m_simDevice;
048
049  private SimBoolean m_simRangeValid;
050  private SimDouble m_simRange;
051
052  /**
053   * Background task that goes through the list of ultrasonic sensors and pings each one in turn.
054   * The counter is configured to read the timing of the returned echo pulse.
055   *
056   * <p><b>DANGER WILL ROBINSON, DANGER WILL ROBINSON:</b> This code runs as a task and assumes that
057   * none of the ultrasonic sensors will change while it's running. If one does, then this will
058   * certainly break. Make sure to disable automatic mode before changing anything with the
059   * sensors!!
060   */
061  private static final class UltrasonicChecker extends Thread {
062    @Override
063    public synchronized void run() {
064      while (m_automaticEnabled) {
065        for (Ultrasonic sensor : m_sensors) {
066          if (!m_automaticEnabled) {
067            break;
068          }
069
070          if (sensor.isEnabled()) {
071            sensor.m_pingChannel.pulse(kPingTime); // do the ping
072          }
073
074          Timer.delay(0.1); // wait for ping to return
075        }
076      }
077    }
078  }
079
080  /**
081   * Initialize the Ultrasonic Sensor. This is the common code that initializes the ultrasonic
082   * sensor given that there are two digital I/O channels allocated. If the system was running in
083   * automatic mode (round-robin) when the new sensor is added, it is stopped, the sensor is added,
084   * then automatic mode is restored.
085   */
086  private synchronized void initialize() {
087    m_simDevice = SimDevice.create("Ultrasonic", m_echoChannel.getChannel());
088    if (m_simDevice != null) {
089      m_simRangeValid = m_simDevice.createBoolean("Range Valid", Direction.kInput, true);
090      m_simRange = m_simDevice.createDouble("Range (in)", Direction.kInput, 0.0);
091      m_pingChannel.setSimDevice(m_simDevice);
092      m_echoChannel.setSimDevice(m_simDevice);
093    }
094    final boolean originalMode = m_automaticEnabled;
095    setAutomaticMode(false); // kill task when adding a new sensor
096    m_sensors.add(this);
097
098    m_counter = new Counter(m_echoChannel); // set up counter for this
099    SendableRegistry.addChild(this, m_counter);
100    // sensor
101    m_counter.setMaxPeriod(1.0);
102    m_counter.setSemiPeriodMode(true);
103    m_counter.reset();
104    m_enabled = true; // make it available for round-robin scheduling
105    setAutomaticMode(originalMode);
106
107    m_instances++;
108    HAL.report(tResourceType.kResourceType_Ultrasonic, m_instances);
109    SendableRegistry.addLW(this, "Ultrasonic", m_echoChannel.getChannel());
110  }
111
112  /**
113   * Returns the echo channel.
114   *
115   * @return The echo channel.
116   */
117  public int getEchoChannel() {
118    return m_echoChannel.getChannel();
119  }
120
121  /**
122   * Create an instance of the Ultrasonic Sensor. This is designed to support the Daventech SRF04
123   * and Vex ultrasonic sensors.
124   *
125   * @param pingChannel The digital output channel that sends the pulse to initiate the sensor
126   *     sending the ping.
127   * @param echoChannel The digital input channel that receives the echo. The length of time that
128   *     the echo is high represents the round trip time of the ping, and the distance.
129   */
130  @SuppressWarnings("this-escape")
131  public Ultrasonic(final int pingChannel, final int echoChannel) {
132    m_pingChannel = new DigitalOutput(pingChannel);
133    m_echoChannel = new DigitalInput(echoChannel);
134    SendableRegistry.addChild(this, m_pingChannel);
135    SendableRegistry.addChild(this, m_echoChannel);
136    m_allocatedChannels = true;
137    initialize();
138  }
139
140  /**
141   * Create an instance of an Ultrasonic Sensor from a DigitalInput for the echo channel and a
142   * DigitalOutput for the ping channel.
143   *
144   * @param pingChannel The digital output object that starts the sensor doing a ping. Requires a
145   *     10uS pulse to start.
146   * @param echoChannel The digital input object that times the return pulse to determine the range.
147   */
148  @SuppressWarnings("this-escape")
149  public Ultrasonic(DigitalOutput pingChannel, DigitalInput echoChannel) {
150    requireNonNullParam(pingChannel, "pingChannel", "Ultrasonic");
151    requireNonNullParam(echoChannel, "echoChannel", "Ultrasonic");
152
153    m_allocatedChannels = false;
154    m_pingChannel = pingChannel;
155    m_echoChannel = echoChannel;
156    initialize();
157  }
158
159  /**
160   * Destructor for the ultrasonic sensor. Delete the instance of the ultrasonic sensor by freeing
161   * the allocated digital channels. If the system was in automatic mode (round-robin), then it is
162   * stopped, then started again after this sensor is removed (provided this wasn't the last
163   * sensor).
164   */
165  @Override
166  public synchronized void close() {
167    SendableRegistry.remove(this);
168    final boolean wasAutomaticMode = m_automaticEnabled;
169    setAutomaticMode(false);
170    if (m_allocatedChannels) {
171      if (m_pingChannel != null) {
172        m_pingChannel.close();
173      }
174      if (m_echoChannel != null) {
175        m_echoChannel.close();
176      }
177    }
178
179    if (m_counter != null) {
180      m_counter.close();
181      m_counter = null;
182    }
183
184    m_pingChannel = null;
185    m_echoChannel = null;
186    synchronized (m_sensors) {
187      m_sensors.remove(this);
188    }
189    if (!m_sensors.isEmpty() && wasAutomaticMode) {
190      setAutomaticMode(true);
191    }
192
193    if (m_simDevice != null) {
194      m_simDevice.close();
195      m_simDevice = null;
196    }
197  }
198
199  /**
200   * Turn Automatic mode on/off for all sensors.
201   *
202   * <p>When in Automatic mode, all sensors will fire in round-robin, waiting a set time between
203   * each sensor.
204   *
205   * @param enabling Set to true if round-robin scheduling should start for all the ultrasonic
206   *     sensors. This scheduling method assures that the sensors are non-interfering because no two
207   *     sensors fire at the same time. If another scheduling algorithm is preferred, it can be
208   *     implemented by pinging the sensors manually and waiting for the results to come back.
209   */
210  public static synchronized void setAutomaticMode(boolean enabling) {
211    if (enabling == m_automaticEnabled) {
212      return; // ignore the case of no change
213    }
214    m_automaticEnabled = enabling;
215
216    if (enabling) {
217      /* Clear all the counters so no data is valid. No synchronization is
218       * needed because the background task is stopped.
219       */
220      for (Ultrasonic u : m_sensors) {
221        u.m_counter.reset();
222      }
223
224      // Start round robin task
225      m_task = new UltrasonicChecker();
226      m_task.start();
227    } else {
228      if (m_task != null) {
229        // Wait for background task to stop running
230        try {
231          m_task.join();
232          m_task = null;
233        } catch (InterruptedException ex) {
234          Thread.currentThread().interrupt();
235          ex.printStackTrace();
236        }
237      }
238
239      /* Clear all the counters (data now invalid) since automatic mode is
240       * disabled. No synchronization is needed because the background task is
241       * stopped.
242       */
243      for (Ultrasonic u : m_sensors) {
244        u.m_counter.reset();
245      }
246    }
247  }
248
249  /**
250   * Single ping to ultrasonic sensor. Send out a single ping to the ultrasonic sensor. This only
251   * works if automatic (round-robin) mode is disabled. A single ping is sent out, and the counter
252   * should count the semi-period when it comes in. The counter is reset to make the current value
253   * invalid.
254   */
255  public void ping() {
256    setAutomaticMode(false); // turn off automatic round-robin if pinging
257    // single sensor
258    m_counter.reset(); // reset the counter to zero (invalid data now)
259    // do the ping to start getting a single range
260    m_pingChannel.pulse(kPingTime);
261  }
262
263  /**
264   * Check if there is a valid range measurement. The ranges are accumulated in a counter that will
265   * increment on each edge of the echo (return) signal. If the count is not at least 2, then the
266   * range has not yet been measured, and is invalid.
267   *
268   * @return true if the range is valid
269   */
270  public boolean isRangeValid() {
271    if (m_simRangeValid != null) {
272      return m_simRangeValid.get();
273    }
274    return m_counter.get() > 1;
275  }
276
277  /**
278   * Get the range in inches from the ultrasonic sensor. If there is no valid value yet, i.e. at
279   * least one measurement hasn't completed, then return 0.
280   *
281   * @return double Range in inches of the target returned from the ultrasonic sensor.
282   */
283  public double getRangeInches() {
284    if (isRangeValid()) {
285      if (m_simRange != null) {
286        return m_simRange.get();
287      }
288      return m_counter.getPeriod() * kSpeedOfSoundInchesPerSec / 2.0;
289    } else {
290      return 0;
291    }
292  }
293
294  /**
295   * Get the range in millimeters from the ultrasonic sensor. If there is no valid value yet, i.e.
296   * at least one measurement hasn't completed, then return 0.
297   *
298   * @return double Range in millimeters of the target returned by the ultrasonic sensor.
299   */
300  public double getRangeMM() {
301    return getRangeInches() * 25.4;
302  }
303
304  /**
305   * Is the ultrasonic enabled.
306   *
307   * @return true if the ultrasonic is enabled
308   */
309  public boolean isEnabled() {
310    return m_enabled;
311  }
312
313  /**
314   * Set if the ultrasonic is enabled.
315   *
316   * @param enable set to true to enable the ultrasonic
317   */
318  public void setEnabled(boolean enable) {
319    m_enabled = enable;
320  }
321
322  @Override
323  public void initSendable(SendableBuilder builder) {
324    builder.setSmartDashboardType("Ultrasonic");
325    builder.addDoubleProperty("Value", this::getRangeInches, null);
326  }
327}