001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.math.trajectory; 006 007import com.fasterxml.jackson.annotation.JsonProperty; 008import edu.wpi.first.math.geometry.Pose2d; 009import edu.wpi.first.math.geometry.Transform2d; 010import edu.wpi.first.math.trajectory.proto.TrajectoryProto; 011import edu.wpi.first.math.trajectory.proto.TrajectoryStateProto; 012import edu.wpi.first.util.protobuf.ProtobufSerializable; 013import java.util.ArrayList; 014import java.util.List; 015import java.util.Objects; 016import java.util.stream.Collectors; 017 018/** 019 * Represents a time-parameterized trajectory. The trajectory contains of various States that 020 * represent the pose, curvature, time elapsed, velocity, and acceleration at that point. 021 */ 022public class Trajectory implements ProtobufSerializable { 023 /** Trajectory protobuf for serialization. */ 024 public static final TrajectoryProto proto = new TrajectoryProto(); 025 026 private final double m_totalTimeSeconds; 027 private final List<State> m_states; 028 029 /** Constructs an empty trajectory. */ 030 public Trajectory() { 031 m_states = new ArrayList<>(); 032 m_totalTimeSeconds = 0.0; 033 } 034 035 /** 036 * Constructs a trajectory from a vector of states. 037 * 038 * @param states A vector of states. 039 * @throws IllegalArgumentException if the vector of states is empty. 040 */ 041 public Trajectory(final List<State> states) { 042 m_states = states; 043 044 if (m_states.isEmpty()) { 045 throw new IllegalArgumentException("Trajectory manually created with no states."); 046 } 047 048 m_totalTimeSeconds = m_states.get(m_states.size() - 1).timeSeconds; 049 } 050 051 /** 052 * Linearly interpolates between two values. 053 * 054 * @param startValue The start value. 055 * @param endValue The end value. 056 * @param t The fraction for interpolation. 057 * @return The interpolated value. 058 */ 059 private static double lerp(double startValue, double endValue, double t) { 060 return startValue + (endValue - startValue) * t; 061 } 062 063 /** 064 * Linearly interpolates between two poses. 065 * 066 * @param startValue The start pose. 067 * @param endValue The end pose. 068 * @param t The fraction for interpolation. 069 * @return The interpolated pose. 070 */ 071 private static Pose2d lerp(Pose2d startValue, Pose2d endValue, double t) { 072 return startValue.plus((endValue.minus(startValue)).times(t)); 073 } 074 075 /** 076 * Returns the initial pose of the trajectory. 077 * 078 * @return The initial pose of the trajectory. 079 */ 080 public Pose2d getInitialPose() { 081 return sample(0).poseMeters; 082 } 083 084 /** 085 * Returns the overall duration of the trajectory. 086 * 087 * @return The duration of the trajectory. 088 */ 089 public double getTotalTimeSeconds() { 090 return m_totalTimeSeconds; 091 } 092 093 /** 094 * Return the states of the trajectory. 095 * 096 * @return The states of the trajectory. 097 */ 098 public List<State> getStates() { 099 return m_states; 100 } 101 102 /** 103 * Sample the trajectory at a point in time. 104 * 105 * @param timeSeconds The point in time since the beginning of the trajectory to sample. 106 * @return The state at that point in time. 107 * @throws IllegalStateException if the trajectory has no states. 108 */ 109 public State sample(double timeSeconds) { 110 if (m_states.isEmpty()) { 111 throw new IllegalStateException("Trajectory cannot be sampled if it has no states."); 112 } 113 114 if (timeSeconds <= m_states.get(0).timeSeconds) { 115 return m_states.get(0); 116 } 117 if (timeSeconds >= m_totalTimeSeconds) { 118 return m_states.get(m_states.size() - 1); 119 } 120 121 // To get the element that we want, we will use a binary search algorithm 122 // instead of iterating over a for-loop. A binary search is O(std::log(n)) 123 // whereas searching using a loop is O(n). 124 125 // This starts at 1 because we use the previous state later on for 126 // interpolation. 127 int low = 1; 128 int high = m_states.size() - 1; 129 130 while (low != high) { 131 int mid = (low + high) / 2; 132 if (m_states.get(mid).timeSeconds < timeSeconds) { 133 // This index and everything under it are less than the requested 134 // timestamp. Therefore, we can discard them. 135 low = mid + 1; 136 } else { 137 // t is at least as large as the element at this index. This means that 138 // anything after it cannot be what we are looking for. 139 high = mid; 140 } 141 } 142 143 // High and Low should be the same. 144 145 // The sample's timestamp is now greater than or equal to the requested 146 // timestamp. If it is greater, we need to interpolate between the 147 // previous state and the current state to get the exact state that we 148 // want. 149 final State sample = m_states.get(low); 150 final State prevSample = m_states.get(low - 1); 151 152 // If the difference in states is negligible, then we are spot on! 153 if (Math.abs(sample.timeSeconds - prevSample.timeSeconds) < 1E-9) { 154 return sample; 155 } 156 // Interpolate between the two states for the state that we want. 157 return prevSample.interpolate( 158 sample, 159 (timeSeconds - prevSample.timeSeconds) / (sample.timeSeconds - prevSample.timeSeconds)); 160 } 161 162 /** 163 * Transforms all poses in the trajectory by the given transform. This is useful for converting a 164 * robot-relative trajectory into a field-relative trajectory. This works with respect to the 165 * first pose in the trajectory. 166 * 167 * @param transform The transform to transform the trajectory by. 168 * @return The transformed trajectory. 169 */ 170 public Trajectory transformBy(Transform2d transform) { 171 var firstState = m_states.get(0); 172 var firstPose = firstState.poseMeters; 173 174 // Calculate the transformed first pose. 175 var newFirstPose = firstPose.plus(transform); 176 List<State> newStates = new ArrayList<>(); 177 178 newStates.add( 179 new State( 180 firstState.timeSeconds, 181 firstState.velocityMetersPerSecond, 182 firstState.accelerationMetersPerSecondSq, 183 newFirstPose, 184 firstState.curvatureRadPerMeter)); 185 186 for (int i = 1; i < m_states.size(); i++) { 187 var state = m_states.get(i); 188 // We are transforming relative to the coordinate frame of the new initial pose. 189 newStates.add( 190 new State( 191 state.timeSeconds, 192 state.velocityMetersPerSecond, 193 state.accelerationMetersPerSecondSq, 194 newFirstPose.plus(state.poseMeters.minus(firstPose)), 195 state.curvatureRadPerMeter)); 196 } 197 198 return new Trajectory(newStates); 199 } 200 201 /** 202 * Transforms all poses in the trajectory so that they are relative to the given pose. This is 203 * useful for converting a field-relative trajectory into a robot-relative trajectory. 204 * 205 * @param pose The pose that is the origin of the coordinate frame that the current trajectory 206 * will be transformed into. 207 * @return The transformed trajectory. 208 */ 209 public Trajectory relativeTo(Pose2d pose) { 210 return new Trajectory( 211 m_states.stream() 212 .map( 213 state -> 214 new State( 215 state.timeSeconds, 216 state.velocityMetersPerSecond, 217 state.accelerationMetersPerSecondSq, 218 state.poseMeters.relativeTo(pose), 219 state.curvatureRadPerMeter)) 220 .collect(Collectors.toList())); 221 } 222 223 /** 224 * Concatenates another trajectory to the current trajectory. The user is responsible for making 225 * sure that the end pose of this trajectory and the start pose of the other trajectory match (if 226 * that is the desired behavior). 227 * 228 * @param other The trajectory to concatenate. 229 * @return The concatenated trajectory. 230 */ 231 public Trajectory concatenate(Trajectory other) { 232 // If this is a default constructed trajectory with no states, then we can 233 // simply return the rhs trajectory. 234 if (m_states.isEmpty()) { 235 return other; 236 } 237 238 // Deep copy the current states. 239 List<State> states = 240 m_states.stream() 241 .map( 242 state -> 243 new State( 244 state.timeSeconds, 245 state.velocityMetersPerSecond, 246 state.accelerationMetersPerSecondSq, 247 state.poseMeters, 248 state.curvatureRadPerMeter)) 249 .collect(Collectors.toList()); 250 251 // Here we omit the first state of the other trajectory because we don't want 252 // two time points with different states. Sample() will automatically 253 // interpolate between the end of this trajectory and the second state of the 254 // other trajectory. 255 for (int i = 1; i < other.getStates().size(); ++i) { 256 var s = other.getStates().get(i); 257 states.add( 258 new State( 259 s.timeSeconds + m_totalTimeSeconds, 260 s.velocityMetersPerSecond, 261 s.accelerationMetersPerSecondSq, 262 s.poseMeters, 263 s.curvatureRadPerMeter)); 264 } 265 return new Trajectory(states); 266 } 267 268 /** 269 * Represents a time-parameterized trajectory. The trajectory contains of various States that 270 * represent the pose, curvature, time elapsed, velocity, and acceleration at that point. 271 */ 272 public static class State implements ProtobufSerializable { 273 /** Trajectory.State protobuf for serialization. */ 274 public static final TrajectoryStateProto proto = new TrajectoryStateProto(); 275 276 /** The time elapsed since the beginning of the trajectory. */ 277 @JsonProperty("time") 278 public double timeSeconds; 279 280 /** The speed at that point of the trajectory. */ 281 @JsonProperty("velocity") 282 public double velocityMetersPerSecond; 283 284 /** The acceleration at that point of the trajectory. */ 285 @JsonProperty("acceleration") 286 public double accelerationMetersPerSecondSq; 287 288 /** The pose at that point of the trajectory. */ 289 @JsonProperty("pose") 290 public Pose2d poseMeters; 291 292 /** The curvature at that point of the trajectory. */ 293 @JsonProperty("curvature") 294 public double curvatureRadPerMeter; 295 296 /** Default constructor. */ 297 public State() { 298 poseMeters = Pose2d.kZero; 299 } 300 301 /** 302 * Constructs a State with the specified parameters. 303 * 304 * @param timeSeconds The time elapsed since the beginning of the trajectory. 305 * @param velocityMetersPerSecond The speed at that point of the trajectory. 306 * @param accelerationMetersPerSecondSq The acceleration at that point of the trajectory. 307 * @param poseMeters The pose at that point of the trajectory. 308 * @param curvatureRadPerMeter The curvature at that point of the trajectory. 309 */ 310 public State( 311 double timeSeconds, 312 double velocityMetersPerSecond, 313 double accelerationMetersPerSecondSq, 314 Pose2d poseMeters, 315 double curvatureRadPerMeter) { 316 this.timeSeconds = timeSeconds; 317 this.velocityMetersPerSecond = velocityMetersPerSecond; 318 this.accelerationMetersPerSecondSq = accelerationMetersPerSecondSq; 319 this.poseMeters = poseMeters; 320 this.curvatureRadPerMeter = curvatureRadPerMeter; 321 } 322 323 /** 324 * Interpolates between two States. 325 * 326 * @param endValue The end value for the interpolation. 327 * @param i The interpolant (fraction). 328 * @return The interpolated state. 329 */ 330 State interpolate(State endValue, double i) { 331 // Find the new t value. 332 final double newT = lerp(timeSeconds, endValue.timeSeconds, i); 333 334 // Find the delta time between the current state and the interpolated state. 335 final double deltaT = newT - timeSeconds; 336 337 // If delta time is negative, flip the order of interpolation. 338 if (deltaT < 0) { 339 return endValue.interpolate(this, 1 - i); 340 } 341 342 // Check whether the robot is reversing at this stage. 343 final boolean reversing = 344 velocityMetersPerSecond < 0 345 || Math.abs(velocityMetersPerSecond) < 1E-9 && accelerationMetersPerSecondSq < 0; 346 347 // Calculate the new velocity 348 // v_f = v_0 + at 349 final double newV = velocityMetersPerSecond + (accelerationMetersPerSecondSq * deltaT); 350 351 // Calculate the change in position. 352 // delta_s = v_0 t + 0.5at² 353 final double newS = 354 (velocityMetersPerSecond * deltaT 355 + 0.5 * accelerationMetersPerSecondSq * Math.pow(deltaT, 2)) 356 * (reversing ? -1.0 : 1.0); 357 358 // Return the new state. To find the new position for the new state, we need 359 // to interpolate between the two endpoint poses. The fraction for 360 // interpolation is the change in position (delta s) divided by the total 361 // distance between the two endpoints. 362 final double interpolationFrac = 363 newS / endValue.poseMeters.getTranslation().getDistance(poseMeters.getTranslation()); 364 365 return new State( 366 newT, 367 newV, 368 accelerationMetersPerSecondSq, 369 lerp(poseMeters, endValue.poseMeters, interpolationFrac), 370 lerp(curvatureRadPerMeter, endValue.curvatureRadPerMeter, interpolationFrac)); 371 } 372 373 @Override 374 public String toString() { 375 return String.format( 376 "State(Sec: %.2f, Vel m/s: %.2f, Accel m/s/s: %.2f, Pose: %s, Curvature: %.2f)", 377 timeSeconds, 378 velocityMetersPerSecond, 379 accelerationMetersPerSecondSq, 380 poseMeters, 381 curvatureRadPerMeter); 382 } 383 384 @Override 385 public boolean equals(Object obj) { 386 return obj instanceof State state 387 && Double.compare(state.timeSeconds, timeSeconds) == 0 388 && Double.compare(state.velocityMetersPerSecond, velocityMetersPerSecond) == 0 389 && Double.compare(state.accelerationMetersPerSecondSq, accelerationMetersPerSecondSq) == 0 390 && Double.compare(state.curvatureRadPerMeter, curvatureRadPerMeter) == 0 391 && Objects.equals(poseMeters, state.poseMeters); 392 } 393 394 @Override 395 public int hashCode() { 396 return Objects.hash( 397 timeSeconds, 398 velocityMetersPerSecond, 399 accelerationMetersPerSecondSq, 400 poseMeters, 401 curvatureRadPerMeter); 402 } 403 } 404 405 @Override 406 public String toString() { 407 String stateList = m_states.stream().map(State::toString).collect(Collectors.joining(", \n")); 408 return String.format("Trajectory - Seconds: %.2f, States:\n%s", m_totalTimeSeconds, stateList); 409 } 410 411 @Override 412 public int hashCode() { 413 return m_states.hashCode(); 414 } 415 416 @Override 417 public boolean equals(Object obj) { 418 return obj instanceof Trajectory other && m_states.equals(other.getStates()); 419 } 420}