001// Copyright (c) FIRST and other WPILib contributors.
002// Open Source Software; you can modify and/or share it under the terms of
003// the WPILib BSD license file in the root directory of this project.
004
005package edu.wpi.first.math.system.plant;
006
007import edu.wpi.first.math.MatBuilder;
008import edu.wpi.first.math.Matrix;
009import edu.wpi.first.math.Nat;
010import edu.wpi.first.math.VecBuilder;
011import edu.wpi.first.math.numbers.N1;
012import edu.wpi.first.math.numbers.N2;
013import edu.wpi.first.math.system.LinearSystem;
014
015/** Linear system ID utility functions. */
016public final class LinearSystemId {
017  private LinearSystemId() {
018    // Utility class
019  }
020
021  /**
022   * Create a state-space model of an elevator system. The states of the system are [position,
023   * velocity]ᵀ, inputs are [voltage], and outputs are [position].
024   *
025   * @param motor The motor (or gearbox) attached to the carriage.
026   * @param massKg The mass of the elevator carriage, in kilograms.
027   * @param radiusMeters The radius of the elevator's driving drum, in meters.
028   * @param gearing The reduction between motor and drum, as a ratio of output to input.
029   * @return A LinearSystem representing the given characterized constants.
030   * @throws IllegalArgumentException if massKg <= 0, radiusMeters <= 0, or gearing <= 0.
031   */
032  public static LinearSystem<N2, N1, N2> createElevatorSystem(
033      DCMotor motor, double massKg, double radiusMeters, double gearing) {
034    if (massKg <= 0.0) {
035      throw new IllegalArgumentException("massKg must be greater than zero.");
036    }
037    if (radiusMeters <= 0.0) {
038      throw new IllegalArgumentException("radiusMeters must be greater than zero.");
039    }
040    if (gearing <= 0) {
041      throw new IllegalArgumentException("gearing must be greater than zero.");
042    }
043
044    return new LinearSystem<>(
045        MatBuilder.fill(
046            Nat.N2(),
047            Nat.N2(),
048            0,
049            1,
050            0,
051            -Math.pow(gearing, 2)
052                * motor.KtNMPerAmp
053                / (motor.rOhms * radiusMeters * radiusMeters * massKg * motor.KvRadPerSecPerVolt)),
054        VecBuilder.fill(0, gearing * motor.KtNMPerAmp / (motor.rOhms * radiusMeters * massKg)),
055        Matrix.eye(Nat.N2()),
056        new Matrix<>(Nat.N2(), Nat.N1()));
057  }
058
059  /**
060   * Create a state-space model of a flywheel system. The states of the system are [angular
061   * velocity], inputs are [voltage], and outputs are [angular velocity].
062   *
063   * @param motor The motor (or gearbox) attached to the flywheel.
064   * @param JKgMetersSquared The moment of inertia J of the flywheel.
065   * @param gearing The reduction between motor and drum, as a ratio of output to input.
066   * @return A LinearSystem representing the given characterized constants.
067   * @throws IllegalArgumentException if JKgMetersSquared &lt;= 0 or gearing &lt;= 0.
068   */
069  public static LinearSystem<N1, N1, N1> createFlywheelSystem(
070      DCMotor motor, double JKgMetersSquared, double gearing) {
071    if (JKgMetersSquared <= 0.0) {
072      throw new IllegalArgumentException("J must be greater than zero.");
073    }
074    if (gearing <= 0.0) {
075      throw new IllegalArgumentException("gearing must be greater than zero.");
076    }
077
078    return new LinearSystem<>(
079        VecBuilder.fill(
080            -gearing
081                * gearing
082                * motor.KtNMPerAmp
083                / (motor.KvRadPerSecPerVolt * motor.rOhms * JKgMetersSquared)),
084        VecBuilder.fill(gearing * motor.KtNMPerAmp / (motor.rOhms * JKgMetersSquared)),
085        Matrix.eye(Nat.N1()),
086        new Matrix<>(Nat.N1(), Nat.N1()));
087  }
088
089  /**
090   * Create a state-space model of a DC motor system. The states of the system are [angular
091   * position, angular velocity], inputs are [voltage], and outputs are [angular position, angular
092   * velocity].
093   *
094   * @param motor The motor (or gearbox) attached to system.
095   * @param JKgMetersSquared The moment of inertia J of the DC motor.
096   * @param gearing The reduction between motor and drum, as a ratio of output to input.
097   * @return A LinearSystem representing the given characterized constants.
098   * @throws IllegalArgumentException if JKgMetersSquared &lt;= 0 or gearing &lt;= 0.
099   */
100  public static LinearSystem<N2, N1, N2> createDCMotorSystem(
101      DCMotor motor, double JKgMetersSquared, double gearing) {
102    if (JKgMetersSquared <= 0.0) {
103      throw new IllegalArgumentException("J must be greater than zero.");
104    }
105    if (gearing <= 0.0) {
106      throw new IllegalArgumentException("gearing must be greater than zero.");
107    }
108
109    return new LinearSystem<>(
110        MatBuilder.fill(
111            Nat.N2(),
112            Nat.N2(),
113            0,
114            1,
115            0,
116            -gearing
117                * gearing
118                * motor.KtNMPerAmp
119                / (motor.KvRadPerSecPerVolt * motor.rOhms * JKgMetersSquared)),
120        VecBuilder.fill(0, gearing * motor.KtNMPerAmp / (motor.rOhms * JKgMetersSquared)),
121        Matrix.eye(Nat.N2()),
122        new Matrix<>(Nat.N2(), Nat.N1()));
123  }
124
125  /**
126   * Create a state-space model of a DC motor system from its kV (volts/(unit/sec)) and kA
127   * (volts/(unit/sec²)). These constants can be found using SysId. the states of the system are
128   * [position, velocity], inputs are [voltage], and outputs are [position].
129   *
130   * <p>The distance unit you choose MUST be an SI unit (i.e. meters or radians). You can use the
131   * {@link edu.wpi.first.math.util.Units} class for converting between unit types.
132   *
133   * <p>The parameters provided by the user are from this feedforward model:
134   *
135   * <p>u = K_v v + K_a a
136   *
137   * @param kV The velocity gain, in volts/(unit/sec)
138   * @param kA The acceleration gain, in volts/(unit/sec²)
139   * @return A LinearSystem representing the given characterized constants.
140   * @throws IllegalArgumentException if kV &lt; 0 or kA &lt;= 0.
141   * @see <a href="https://github.com/wpilibsuite/sysid">https://github.com/wpilibsuite/sysid</a>
142   */
143  public static LinearSystem<N2, N1, N2> createDCMotorSystem(double kV, double kA) {
144    if (kV < 0.0) {
145      throw new IllegalArgumentException("Kv must be greater than or equal to zero.");
146    }
147    if (kA <= 0.0) {
148      throw new IllegalArgumentException("Ka must be greater than zero.");
149    }
150
151    return new LinearSystem<>(
152        MatBuilder.fill(Nat.N2(), Nat.N2(), 0, 1, 0, -kV / kA),
153        VecBuilder.fill(0, 1 / kA),
154        Matrix.eye(Nat.N2()),
155        new Matrix<>(Nat.N2(), Nat.N1()));
156  }
157
158  /**
159   * Create a state-space model of a differential drive drivetrain. In this model, the states are
160   * [left velocity, right velocity]ᵀ, inputs are [left voltage, right voltage]ᵀ, and outputs are
161   * [left velocity, right velocity]ᵀ.
162   *
163   * @param motor The motor (or gearbox) driving the drivetrain.
164   * @param massKg The mass of the robot in kilograms.
165   * @param rMeters The radius of the wheels in meters.
166   * @param rbMeters The radius of the base (half the track width) in meters.
167   * @param JKgMetersSquared The moment of inertia of the robot.
168   * @param gearing The gearing reduction as output over input.
169   * @return A LinearSystem representing a differential drivetrain.
170   * @throws IllegalArgumentException if m &lt;= 0, r &lt;= 0, rb &lt;= 0, J &lt;= 0, or gearing
171   *     &lt;= 0.
172   */
173  public static LinearSystem<N2, N2, N2> createDrivetrainVelocitySystem(
174      DCMotor motor,
175      double massKg,
176      double rMeters,
177      double rbMeters,
178      double JKgMetersSquared,
179      double gearing) {
180    if (massKg <= 0.0) {
181      throw new IllegalArgumentException("massKg must be greater than zero.");
182    }
183    if (rMeters <= 0.0) {
184      throw new IllegalArgumentException("rMeters must be greater than zero.");
185    }
186    if (rbMeters <= 0.0) {
187      throw new IllegalArgumentException("rbMeters must be greater than zero.");
188    }
189    if (JKgMetersSquared <= 0.0) {
190      throw new IllegalArgumentException("JKgMetersSquared must be greater than zero.");
191    }
192    if (gearing <= 0.0) {
193      throw new IllegalArgumentException("gearing must be greater than zero.");
194    }
195
196    var C1 =
197        -(gearing * gearing)
198            * motor.KtNMPerAmp
199            / (motor.KvRadPerSecPerVolt * motor.rOhms * rMeters * rMeters);
200    var C2 = gearing * motor.KtNMPerAmp / (motor.rOhms * rMeters);
201
202    final double C3 = 1 / massKg + rbMeters * rbMeters / JKgMetersSquared;
203    final double C4 = 1 / massKg - rbMeters * rbMeters / JKgMetersSquared;
204    var A = MatBuilder.fill(Nat.N2(), Nat.N2(), C3 * C1, C4 * C1, C4 * C1, C3 * C1);
205    var B = MatBuilder.fill(Nat.N2(), Nat.N2(), C3 * C2, C4 * C2, C4 * C2, C3 * C2);
206    var C = MatBuilder.fill(Nat.N2(), Nat.N2(), 1.0, 0.0, 0.0, 1.0);
207    var D = MatBuilder.fill(Nat.N2(), Nat.N2(), 0.0, 0.0, 0.0, 0.0);
208
209    return new LinearSystem<>(A, B, C, D);
210  }
211
212  /**
213   * Create a state-space model of a single jointed arm system. The states of the system are [angle,
214   * angular velocity], inputs are [voltage], and outputs are [angle].
215   *
216   * @param motor The motor (or gearbox) attached to the arm.
217   * @param JKgSquaredMeters The moment of inertia J of the arm.
218   * @param gearing The gearing between the motor and arm, in output over input. Most of the time
219   *     this will be greater than 1.
220   * @return A LinearSystem representing the given characterized constants.
221   */
222  public static LinearSystem<N2, N1, N2> createSingleJointedArmSystem(
223      DCMotor motor, double JKgSquaredMeters, double gearing) {
224    if (JKgSquaredMeters <= 0.0) {
225      throw new IllegalArgumentException("JKgSquaredMeters must be greater than zero.");
226    }
227    if (gearing <= 0.0) {
228      throw new IllegalArgumentException("gearing must be greater than zero.");
229    }
230
231    return new LinearSystem<>(
232        MatBuilder.fill(
233            Nat.N2(),
234            Nat.N2(),
235            0,
236            1,
237            0,
238            -Math.pow(gearing, 2)
239                * motor.KtNMPerAmp
240                / (motor.KvRadPerSecPerVolt * motor.rOhms * JKgSquaredMeters)),
241        VecBuilder.fill(0, gearing * motor.KtNMPerAmp / (motor.rOhms * JKgSquaredMeters)),
242        Matrix.eye(Nat.N2()),
243        new Matrix<>(Nat.N2(), Nat.N1()));
244  }
245
246  /**
247   * Create a state-space model for a 1 DOF velocity system from its kV (volts/(unit/sec)) and kA
248   * (volts/(unit/sec²). These constants cam be found using SysId. The states of the system are
249   * [velocity], inputs are [voltage], and outputs are [velocity].
250   *
251   * <p>The distance unit you choose MUST be an SI unit (i.e. meters or radians). You can use the
252   * {@link edu.wpi.first.math.util.Units} class for converting between unit types.
253   *
254   * <p>The parameters provided by the user are from this feedforward model:
255   *
256   * <p>u = K_v v + K_a a
257   *
258   * @param kV The velocity gain, in volts/(unit/sec)
259   * @param kA The acceleration gain, in volts/(unit/sec²)
260   * @return A LinearSystem representing the given characterized constants.
261   * @throws IllegalArgumentException if kV &lt; 0 or kA &lt;= 0.
262   * @see <a href="https://github.com/wpilibsuite/sysid">https://github.com/wpilibsuite/sysid</a>
263   */
264  public static LinearSystem<N1, N1, N1> identifyVelocitySystem(double kV, double kA) {
265    if (kV < 0.0) {
266      throw new IllegalArgumentException("Kv must be greater than or equal to zero.");
267    }
268    if (kA <= 0.0) {
269      throw new IllegalArgumentException("Ka must be greater than zero.");
270    }
271
272    return new LinearSystem<>(
273        VecBuilder.fill(-kV / kA),
274        VecBuilder.fill(1.0 / kA),
275        VecBuilder.fill(1.0),
276        VecBuilder.fill(0.0));
277  }
278
279  /**
280   * Create a state-space model for a 1 DOF position system from its kV (volts/(unit/sec)) and kA
281   * (volts/(unit/sec²). These constants cam be found using SysId. The states of the system are
282   * [position, velocity]ᵀ, inputs are [voltage], and outputs are [position].
283   *
284   * <p>The distance unit you choose MUST be an SI unit (i.e. meters or radians). You can use the
285   * {@link edu.wpi.first.math.util.Units} class for converting between unit types.
286   *
287   * <p>The parameters provided by the user are from this feedforward model:
288   *
289   * <p>u = K_v v + K_a a
290   *
291   * @param kV The velocity gain, in volts/(unit/sec)
292   * @param kA The acceleration gain, in volts/(unit/sec²)
293   * @return A LinearSystem representing the given characterized constants.
294   * @throws IllegalArgumentException if kV &lt; 0 or kA &lt;= 0.
295   * @see <a href="https://github.com/wpilibsuite/sysid">https://github.com/wpilibsuite/sysid</a>
296   */
297  public static LinearSystem<N2, N1, N2> identifyPositionSystem(double kV, double kA) {
298    if (kV < 0.0) {
299      throw new IllegalArgumentException("Kv must be greater than or equal to zero.");
300    }
301    if (kA <= 0.0) {
302      throw new IllegalArgumentException("Ka must be greater than zero.");
303    }
304
305    return new LinearSystem<>(
306        MatBuilder.fill(Nat.N2(), Nat.N2(), 0.0, 1.0, 0.0, -kV / kA),
307        VecBuilder.fill(0.0, 1.0 / kA),
308        Matrix.eye(Nat.N2()),
309        new Matrix<>(Nat.N2(), Nat.N1()));
310  }
311
312  /**
313   * Identify a differential drive drivetrain given the drivetrain's kV and kA in both linear
314   * {(volts/(meter/sec), (volts/(meter/sec²))} and angular {(volts/(radian/sec)),
315   * (volts/(radian/sec²))} cases. These constants can be found using SysId.
316   *
317   * <p>States: [[left velocity], [right velocity]]<br>
318   * Inputs: [[left voltage], [right voltage]]<br>
319   * Outputs: [[left velocity], [right velocity]]
320   *
321   * @param kVLinear The linear velocity gain in volts per (meters per second).
322   * @param kALinear The linear acceleration gain in volts per (meters per second squared).
323   * @param kVAngular The angular velocity gain in volts per (meters per second).
324   * @param kAAngular The angular acceleration gain in volts per (meters per second squared).
325   * @return A LinearSystem representing the given characterized constants.
326   * @throws IllegalArgumentException if kVLinear &lt;= 0, kALinear &lt;= 0, kVAngular &lt;= 0, or
327   *     kAAngular &lt;= 0.
328   * @see <a href="https://github.com/wpilibsuite/sysid">https://github.com/wpilibsuite/sysid</a>
329   */
330  public static LinearSystem<N2, N2, N2> identifyDrivetrainSystem(
331      double kVLinear, double kALinear, double kVAngular, double kAAngular) {
332    if (kVLinear <= 0.0) {
333      throw new IllegalArgumentException("Kv,linear must be greater than zero.");
334    }
335    if (kALinear <= 0.0) {
336      throw new IllegalArgumentException("Ka,linear must be greater than zero.");
337    }
338    if (kVAngular <= 0.0) {
339      throw new IllegalArgumentException("Kv,angular must be greater than zero.");
340    }
341    if (kAAngular <= 0.0) {
342      throw new IllegalArgumentException("Ka,angular must be greater than zero.");
343    }
344
345    final double A1 = 0.5 * -(kVLinear / kALinear + kVAngular / kAAngular);
346    final double A2 = 0.5 * -(kVLinear / kALinear - kVAngular / kAAngular);
347    final double B1 = 0.5 * (1.0 / kALinear + 1.0 / kAAngular);
348    final double B2 = 0.5 * (1.0 / kALinear - 1.0 / kAAngular);
349
350    return new LinearSystem<>(
351        MatBuilder.fill(Nat.N2(), Nat.N2(), A1, A2, A2, A1),
352        MatBuilder.fill(Nat.N2(), Nat.N2(), B1, B2, B2, B1),
353        MatBuilder.fill(Nat.N2(), Nat.N2(), 1, 0, 0, 1),
354        MatBuilder.fill(Nat.N2(), Nat.N2(), 0, 0, 0, 0));
355  }
356
357  /**
358   * Identify a differential drive drivetrain given the drivetrain's kV and kA in both linear
359   * {(volts/(meter/sec)), (volts/(meter/sec²))} and angular {(volts/(radian/sec)),
360   * (volts/(radian/sec²))} cases. This can be found using SysId.
361   *
362   * <p>States: [[left velocity], [right velocity]]<br>
363   * Inputs: [[left voltage], [right voltage]]<br>
364   * Outputs: [[left velocity], [right velocity]]
365   *
366   * @param kVLinear The linear velocity gain in volts per (meters per second).
367   * @param kALinear The linear acceleration gain in volts per (meters per second squared).
368   * @param kVAngular The angular velocity gain in volts per (radians per second).
369   * @param kAAngular The angular acceleration gain in volts per (radians per second squared).
370   * @param trackwidth The distance between the differential drive's left and right wheels, in
371   *     meters.
372   * @return A LinearSystem representing the given characterized constants.
373   * @throws IllegalArgumentException if kVLinear &lt;= 0, kALinear &lt;= 0, kVAngular &lt;= 0,
374   *     kAAngular &lt;= 0, or trackwidth &lt;= 0.
375   * @see <a href="https://github.com/wpilibsuite/sysid">https://github.com/wpilibsuite/sysid</a>
376   */
377  public static LinearSystem<N2, N2, N2> identifyDrivetrainSystem(
378      double kVLinear, double kALinear, double kVAngular, double kAAngular, double trackwidth) {
379    if (kVLinear <= 0.0) {
380      throw new IllegalArgumentException("Kv,linear must be greater than zero.");
381    }
382    if (kALinear <= 0.0) {
383      throw new IllegalArgumentException("Ka,linear must be greater than zero.");
384    }
385    if (kVAngular <= 0.0) {
386      throw new IllegalArgumentException("Kv,angular must be greater than zero.");
387    }
388    if (kAAngular <= 0.0) {
389      throw new IllegalArgumentException("Ka,angular must be greater than zero.");
390    }
391    if (trackwidth <= 0.0) {
392      throw new IllegalArgumentException("trackwidth must be greater than zero.");
393    }
394
395    // We want to find a factor to include in Kv,angular that will convert
396    // `u = Kv,angular omega` to `u = Kv,angular v`.
397    //
398    // v = omega r
399    // omega = v/r
400    // omega = 1/r v
401    // omega = 1/(trackwidth/2) v
402    // omega = 2/trackwidth v
403    //
404    // So multiplying by 2/trackwidth converts the angular gains from V/(rad/s)
405    // to V/(m/s).
406    return identifyDrivetrainSystem(
407        kVLinear, kALinear, kVAngular * 2.0 / trackwidth, kAAngular * 2.0 / trackwidth);
408  }
409}