001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.math.spline; 006 007import org.ejml.simple.SimpleMatrix; 008 009/** Represents a hermite spline of degree 5. */ 010public class QuinticHermiteSpline extends Spline { 011 private static SimpleMatrix hermiteBasis; 012 private final SimpleMatrix m_coefficients; 013 014 private final ControlVector m_initialControlVector; 015 private final ControlVector m_finalControlVector; 016 017 /** 018 * Constructs a quintic hermite spline with the specified control vectors. Each control vector 019 * contains into about the location of the point, its first derivative, and its second derivative. 020 * 021 * @param xInitialControlVector The control vector for the initial point in the x dimension. 022 * @param xFinalControlVector The control vector for the final point in the x dimension. 023 * @param yInitialControlVector The control vector for the initial point in the y dimension. 024 * @param yFinalControlVector The control vector for the final point in the y dimension. 025 */ 026 public QuinticHermiteSpline( 027 double[] xInitialControlVector, 028 double[] xFinalControlVector, 029 double[] yInitialControlVector, 030 double[] yFinalControlVector) { 031 super(5); 032 033 // Populate the coefficients for the actual spline equations. 034 // Row 0 is x coefficients 035 // Row 1 is y coefficients 036 final var hermite = makeHermiteBasis(); 037 final var x = getControlVectorFromArrays(xInitialControlVector, xFinalControlVector); 038 final var y = getControlVectorFromArrays(yInitialControlVector, yFinalControlVector); 039 040 final var xCoeffs = (hermite.mult(x)).transpose(); 041 final var yCoeffs = (hermite.mult(y)).transpose(); 042 043 m_coefficients = new SimpleMatrix(6, 6); 044 045 for (int i = 0; i < 6; i++) { 046 m_coefficients.set(0, i, xCoeffs.get(0, i)); 047 m_coefficients.set(1, i, yCoeffs.get(0, i)); 048 } 049 for (int i = 0; i < 6; i++) { 050 // Populate Row 2 and Row 3 with the derivatives of the equations above. 051 // Here, we are multiplying by (5 - i) to manually take the derivative. The 052 // power of the term in index 0 is 5, index 1 is 4 and so on. To find the 053 // coefficient of the derivative, we can use the power rule and multiply 054 // the existing coefficient by its power. 055 m_coefficients.set(2, i, m_coefficients.get(0, i) * (5 - i)); 056 m_coefficients.set(3, i, m_coefficients.get(1, i) * (5 - i)); 057 } 058 for (int i = 0; i < 5; i++) { 059 // Then populate row 4 and 5 with the second derivatives. 060 // Here, we are multiplying by (4 - i) to manually take the derivative. The 061 // power of the term in index 0 is 4, index 1 is 3 and so on. To find the 062 // coefficient of the derivative, we can use the power rule and multiply 063 // the existing coefficient by its power. 064 m_coefficients.set(4, i, m_coefficients.get(2, i) * (4 - i)); 065 m_coefficients.set(5, i, m_coefficients.get(3, i) * (4 - i)); 066 } 067 068 // Assign member variables. 069 m_initialControlVector = new ControlVector(xInitialControlVector, yInitialControlVector); 070 m_finalControlVector = new ControlVector(xFinalControlVector, yFinalControlVector); 071 } 072 073 /** 074 * Returns the coefficients matrix. 075 * 076 * @return The coefficients matrix. 077 */ 078 @Override 079 public SimpleMatrix getCoefficients() { 080 return m_coefficients; 081 } 082 083 /** 084 * Returns the initial control vector that created this spline. 085 * 086 * @return The initial control vector that created this spline. 087 */ 088 @Override 089 public ControlVector getInitialControlVector() { 090 return m_initialControlVector; 091 } 092 093 /** 094 * Returns the final control vector that created this spline. 095 * 096 * @return The final control vector that created this spline. 097 */ 098 @Override 099 public ControlVector getFinalControlVector() { 100 return m_finalControlVector; 101 } 102 103 /** 104 * Returns the hermite basis matrix for quintic hermite spline interpolation. 105 * 106 * @return The hermite basis matrix for quintic hermite spline interpolation. 107 */ 108 private SimpleMatrix makeHermiteBasis() { 109 if (hermiteBasis == null) { 110 // Given P(i), P'(i), P"(i), P(i+1), P'(i+1), P"(i+1), the control vectors, 111 // we want to find the coefficients of the spline 112 // P(t) = a₅t⁵ + a₄t⁴ + a₃t³ + a₂t² + a₁t + a₀. 113 // 114 // P(i) = P(0) = a₀ 115 // P'(i) = P'(0) = a₁ 116 // P''(i) = P"(0) = 2a₂ 117 // P(i+1) = P(1) = a₅ + a₄ + a₃ + a₂ + a₁ + a₀ 118 // P'(i+1) = P'(1) = 5a₅ + 4a₄ + 3a₃ + 2a₂ + a₁ 119 // P"(i+1) = P"(1) = 20a₅ + 12a₄ + 6a₃ + 2a₂ 120 // 121 // [P(i) ] = [ 0 0 0 0 0 1][a₅] 122 // [P'(i) ] = [ 0 0 0 0 1 0][a₄] 123 // [P"(i) ] = [ 0 0 0 2 0 0][a₃] 124 // [P(i+1) ] = [ 1 1 1 1 1 1][a₂] 125 // [P'(i+1)] = [ 5 4 3 2 1 0][a₁] 126 // [P"(i+1)] = [20 12 6 2 0 0][a₀] 127 // 128 // To solve for the coefficients, we can invert the 6x6 matrix and move it 129 // to the other side of the equation. 130 // 131 // [a₅] = [ -6.0 -3.0 -0.5 6.0 -3.0 0.5][P(i) ] 132 // [a₄] = [ 15.0 8.0 1.5 -15.0 7.0 -1.0][P'(i) ] 133 // [a₃] = [-10.0 -6.0 -1.5 10.0 -4.0 0.5][P"(i) ] 134 // [a₂] = [ 0.0 0.0 0.5 0.0 0.0 0.0][P(i+1) ] 135 // [a₁] = [ 0.0 1.0 0.0 0.0 0.0 0.0][P'(i+1)] 136 // [a₀] = [ 1.0 0.0 0.0 0.0 0.0 0.0][P"(i+1)] 137 hermiteBasis = 138 new SimpleMatrix( 139 6, 140 6, 141 true, 142 new double[] { 143 -06.0, -03.0, -00.5, +06.0, -03.0, +00.5, +15.0, +08.0, +01.5, -15.0, +07.0, -01.0, 144 -10.0, -06.0, -01.5, +10.0, -04.0, +00.5, +00.0, +00.0, +00.5, +00.0, +00.0, +00.0, 145 +00.0, +01.0, +00.0, +00.0, +00.0, +00.0, +01.0, +00.0, +00.0, +00.0, +00.0, +00.0 146 }); 147 } 148 return hermiteBasis; 149 } 150 151 /** 152 * Returns the control vector for each dimension as a matrix from the user-provided arrays in the 153 * constructor. 154 * 155 * @param initialVector The control vector for the initial point. 156 * @param finalVector The control vector for the final point. 157 * @return The control vector matrix for a dimension. 158 */ 159 private SimpleMatrix getControlVectorFromArrays(double[] initialVector, double[] finalVector) { 160 if (initialVector.length != 3 || finalVector.length != 3) { 161 throw new IllegalArgumentException("Size of vectors must be 3"); 162 } 163 return new SimpleMatrix( 164 6, 165 1, 166 true, 167 new double[] { 168 initialVector[0], initialVector[1], initialVector[2], 169 finalVector[0], finalVector[1], finalVector[2] 170 }); 171 } 172}