001// Copyright (c) FIRST and other WPILib contributors. 002// Open Source Software; you can modify and/or share it under the terms of 003// the WPILib BSD license file in the root directory of this project. 004 005package edu.wpi.first.math.estimator; 006 007import edu.wpi.first.math.MathSharedStore; 008import edu.wpi.first.math.Matrix; 009import edu.wpi.first.math.Nat; 010import edu.wpi.first.math.VecBuilder; 011import edu.wpi.first.math.geometry.Pose2d; 012import edu.wpi.first.math.geometry.Rotation2d; 013import edu.wpi.first.math.geometry.Twist2d; 014import edu.wpi.first.math.interpolation.Interpolatable; 015import edu.wpi.first.math.interpolation.TimeInterpolatableBuffer; 016import edu.wpi.first.math.kinematics.Kinematics; 017import edu.wpi.first.math.kinematics.Odometry; 018import edu.wpi.first.math.kinematics.WheelPositions; 019import edu.wpi.first.math.numbers.N1; 020import edu.wpi.first.math.numbers.N3; 021import java.util.Map; 022import java.util.NoSuchElementException; 023import java.util.Objects; 024 025/** 026 * This class wraps {@link Odometry} to fuse latency-compensated vision measurements with encoder 027 * measurements. Robot code should not use this directly- Instead, use the particular type for your 028 * drivetrain (e.g., {@link DifferentialDrivePoseEstimator}). It is intended to be a drop-in 029 * replacement for {@link Odometry}; in fact, if you never call {@link 030 * PoseEstimator#addVisionMeasurement} and only call {@link PoseEstimator#update} then this will 031 * behave exactly the same as Odometry. 032 * 033 * <p>{@link PoseEstimator#update} should be called every robot loop. 034 * 035 * <p>{@link PoseEstimator#addVisionMeasurement} can be called as infrequently as you want; if you 036 * never call it then this class will behave exactly like regular encoder odometry. 037 * 038 * @param <T> Wheel positions type. 039 */ 040public class PoseEstimator<T extends WheelPositions<T>> { 041 private final Kinematics<?, T> m_kinematics; 042 private final Odometry<T> m_odometry; 043 private final Matrix<N3, N1> m_q = new Matrix<>(Nat.N3(), Nat.N1()); 044 private final Matrix<N3, N3> m_visionK = new Matrix<>(Nat.N3(), Nat.N3()); 045 046 private static final double kBufferDuration = 1.5; 047 private final TimeInterpolatableBuffer<InterpolationRecord> m_poseBuffer = 048 TimeInterpolatableBuffer.createBuffer(kBufferDuration); 049 050 /** 051 * Constructs a PoseEstimator. 052 * 053 * @param kinematics A correctly-configured kinematics object for your drivetrain. 054 * @param odometry A correctly-configured odometry object for your drivetrain. 055 * @param stateStdDevs Standard deviations of the pose estimate (x position in meters, y position 056 * in meters, and heading in radians). Increase these numbers to trust your state estimate 057 * less. 058 * @param visionMeasurementStdDevs Standard deviations of the vision pose measurement (x position 059 * in meters, y position in meters, and heading in radians). Increase these numbers to trust 060 * the vision pose measurement less. 061 */ 062 public PoseEstimator( 063 Kinematics<?, T> kinematics, 064 Odometry<T> odometry, 065 Matrix<N3, N1> stateStdDevs, 066 Matrix<N3, N1> visionMeasurementStdDevs) { 067 m_kinematics = kinematics; 068 m_odometry = odometry; 069 070 for (int i = 0; i < 3; ++i) { 071 m_q.set(i, 0, stateStdDevs.get(i, 0) * stateStdDevs.get(i, 0)); 072 } 073 setVisionMeasurementStdDevs(visionMeasurementStdDevs); 074 } 075 076 /** 077 * Sets the pose estimator's trust of global measurements. This might be used to change trust in 078 * vision measurements after the autonomous period, or to change trust as distance to a vision 079 * target increases. 080 * 081 * @param visionMeasurementStdDevs Standard deviations of the vision measurements. Increase these 082 * numbers to trust global measurements from vision less. This matrix is in the form [x, y, 083 * theta]ᵀ, with units in meters and radians. 084 */ 085 public final void setVisionMeasurementStdDevs(Matrix<N3, N1> visionMeasurementStdDevs) { 086 var r = new double[3]; 087 for (int i = 0; i < 3; ++i) { 088 r[i] = visionMeasurementStdDevs.get(i, 0) * visionMeasurementStdDevs.get(i, 0); 089 } 090 091 // Solve for closed form Kalman gain for continuous Kalman filter with A = 0 092 // and C = I. See wpimath/algorithms.md. 093 for (int row = 0; row < 3; ++row) { 094 if (m_q.get(row, 0) == 0.0) { 095 m_visionK.set(row, row, 0.0); 096 } else { 097 m_visionK.set( 098 row, row, m_q.get(row, 0) / (m_q.get(row, 0) + Math.sqrt(m_q.get(row, 0) * r[row]))); 099 } 100 } 101 } 102 103 /** 104 * Resets the robot's position on the field. 105 * 106 * <p>The gyroscope angle does not need to be reset here on the user's robot code. The library 107 * automatically takes care of offsetting the gyro angle. 108 * 109 * @param gyroAngle The angle reported by the gyroscope. 110 * @param wheelPositions The current encoder readings. 111 * @param poseMeters The position on the field that your robot is at. 112 */ 113 public void resetPosition(Rotation2d gyroAngle, T wheelPositions, Pose2d poseMeters) { 114 // Reset state estimate and error covariance 115 m_odometry.resetPosition(gyroAngle, wheelPositions, poseMeters); 116 m_poseBuffer.clear(); 117 } 118 119 /** 120 * Gets the estimated robot pose. 121 * 122 * @return The estimated robot pose in meters. 123 */ 124 public Pose2d getEstimatedPosition() { 125 return m_odometry.getPoseMeters(); 126 } 127 128 /** 129 * Adds a vision measurement to the Kalman Filter. This will correct the odometry pose estimate 130 * while still accounting for measurement noise. 131 * 132 * <p>This method can be called as infrequently as you want, as long as you are calling {@link 133 * PoseEstimator#update} every loop. 134 * 135 * <p>To promote stability of the pose estimate and make it robust to bad vision data, we 136 * recommend only adding vision measurements that are already within one meter or so of the 137 * current pose estimate. 138 * 139 * @param visionRobotPoseMeters The pose of the robot as measured by the vision camera. 140 * @param timestampSeconds The timestamp of the vision measurement in seconds. Note that if you 141 * don't use your own time source by calling {@link 142 * PoseEstimator#updateWithTime(double,Rotation2d,WheelPositions)} then you must use a 143 * timestamp with an epoch since FPGA startup (i.e., the epoch of this timestamp is the same 144 * epoch as {@link edu.wpi.first.wpilibj.Timer#getFPGATimestamp()}.) This means that you 145 * should use {@link edu.wpi.first.wpilibj.Timer#getFPGATimestamp()} as your time source or 146 * sync the epochs. 147 */ 148 public void addVisionMeasurement(Pose2d visionRobotPoseMeters, double timestampSeconds) { 149 // Step 0: If this measurement is old enough to be outside the pose buffer's timespan, skip. 150 try { 151 if (m_poseBuffer.getInternalBuffer().lastKey() - kBufferDuration > timestampSeconds) { 152 return; 153 } 154 } catch (NoSuchElementException ex) { 155 return; 156 } 157 158 // Step 1: Get the pose odometry measured at the moment the vision measurement was made. 159 var sample = m_poseBuffer.getSample(timestampSeconds); 160 161 if (sample.isEmpty()) { 162 return; 163 } 164 165 // Step 2: Measure the twist between the odometry pose and the vision pose. 166 var twist = sample.get().poseMeters.log(visionRobotPoseMeters); 167 168 // Step 3: We should not trust the twist entirely, so instead we scale this twist by a Kalman 169 // gain matrix representing how much we trust vision measurements compared to our current pose. 170 var k_times_twist = m_visionK.times(VecBuilder.fill(twist.dx, twist.dy, twist.dtheta)); 171 172 // Step 4: Convert back to Twist2d. 173 var scaledTwist = 174 new Twist2d(k_times_twist.get(0, 0), k_times_twist.get(1, 0), k_times_twist.get(2, 0)); 175 176 // Step 5: Reset Odometry to state at sample with vision adjustment. 177 m_odometry.resetPosition( 178 sample.get().gyroAngle, 179 sample.get().wheelPositions, 180 sample.get().poseMeters.exp(scaledTwist)); 181 182 // Step 6: Record the current pose to allow multiple measurements from the same timestamp 183 m_poseBuffer.addSample( 184 timestampSeconds, 185 new InterpolationRecord( 186 getEstimatedPosition(), sample.get().gyroAngle, sample.get().wheelPositions)); 187 188 // Step 7: Replay odometry inputs between sample time and latest recorded sample to update the 189 // pose buffer and correct odometry. 190 for (Map.Entry<Double, InterpolationRecord> entry : 191 m_poseBuffer.getInternalBuffer().tailMap(timestampSeconds).entrySet()) { 192 updateWithTime(entry.getKey(), entry.getValue().gyroAngle, entry.getValue().wheelPositions); 193 } 194 } 195 196 /** 197 * Adds a vision measurement to the Kalman Filter. This will correct the odometry pose estimate 198 * while still accounting for measurement noise. 199 * 200 * <p>This method can be called as infrequently as you want, as long as you are calling {@link 201 * PoseEstimator#update} every loop. 202 * 203 * <p>To promote stability of the pose estimate and make it robust to bad vision data, we 204 * recommend only adding vision measurements that are already within one meter or so of the 205 * current pose estimate. 206 * 207 * <p>Note that the vision measurement standard deviations passed into this method will continue 208 * to apply to future measurements until a subsequent call to {@link 209 * PoseEstimator#setVisionMeasurementStdDevs(Matrix)} or this method. 210 * 211 * @param visionRobotPoseMeters The pose of the robot as measured by the vision camera. 212 * @param timestampSeconds The timestamp of the vision measurement in seconds. Note that if you 213 * don't use your own time source by calling {@link #updateWithTime}, then you must use a 214 * timestamp with an epoch since FPGA startup (i.e., the epoch of this timestamp is the same 215 * epoch as {@link edu.wpi.first.wpilibj.Timer#getFPGATimestamp()}). This means that you 216 * should use {@link edu.wpi.first.wpilibj.Timer#getFPGATimestamp()} as your time source in 217 * this case. 218 * @param visionMeasurementStdDevs Standard deviations of the vision pose measurement (x position 219 * in meters, y position in meters, and heading in radians). Increase these numbers to trust 220 * the vision pose measurement less. 221 */ 222 public void addVisionMeasurement( 223 Pose2d visionRobotPoseMeters, 224 double timestampSeconds, 225 Matrix<N3, N1> visionMeasurementStdDevs) { 226 setVisionMeasurementStdDevs(visionMeasurementStdDevs); 227 addVisionMeasurement(visionRobotPoseMeters, timestampSeconds); 228 } 229 230 /** 231 * Updates the pose estimator with wheel encoder and gyro information. This should be called every 232 * loop. 233 * 234 * @param gyroAngle The current gyro angle. 235 * @param wheelPositions The current encoder readings. 236 * @return The estimated pose of the robot in meters. 237 */ 238 public Pose2d update(Rotation2d gyroAngle, T wheelPositions) { 239 return updateWithTime(MathSharedStore.getTimestamp(), gyroAngle, wheelPositions); 240 } 241 242 /** 243 * Updates the pose estimator with wheel encoder and gyro information. This should be called every 244 * loop. 245 * 246 * @param currentTimeSeconds Time at which this method was called, in seconds. 247 * @param gyroAngle The current gyro angle. 248 * @param wheelPositions The current encoder readings. 249 * @return The estimated pose of the robot in meters. 250 */ 251 public Pose2d updateWithTime(double currentTimeSeconds, Rotation2d gyroAngle, T wheelPositions) { 252 m_odometry.update(gyroAngle, wheelPositions); 253 m_poseBuffer.addSample( 254 currentTimeSeconds, 255 new InterpolationRecord(getEstimatedPosition(), gyroAngle, wheelPositions.copy())); 256 257 return getEstimatedPosition(); 258 } 259 260 /** 261 * Represents an odometry record. The record contains the inputs provided as well as the pose that 262 * was observed based on these inputs, as well as the previous record and its inputs. 263 */ 264 private class InterpolationRecord implements Interpolatable<InterpolationRecord> { 265 // The pose observed given the current sensor inputs and the previous pose. 266 private final Pose2d poseMeters; 267 268 // The current gyro angle. 269 private final Rotation2d gyroAngle; 270 271 // The current encoder readings. 272 private final T wheelPositions; 273 274 /** 275 * Constructs an Interpolation Record with the specified parameters. 276 * 277 * @param poseMeters The pose observed given the current sensor inputs and the previous pose. 278 * @param gyro The current gyro angle. 279 * @param wheelPositions The current encoder readings. 280 */ 281 private InterpolationRecord(Pose2d poseMeters, Rotation2d gyro, T wheelPositions) { 282 this.poseMeters = poseMeters; 283 this.gyroAngle = gyro; 284 this.wheelPositions = wheelPositions; 285 } 286 287 /** 288 * Return the interpolated record. This object is assumed to be the starting position, or lower 289 * bound. 290 * 291 * @param endValue The upper bound, or end. 292 * @param t How far between the lower and upper bound we are. This should be bounded in [0, 1]. 293 * @return The interpolated value. 294 */ 295 @Override 296 public InterpolationRecord interpolate(InterpolationRecord endValue, double t) { 297 if (t < 0) { 298 return this; 299 } else if (t >= 1) { 300 return endValue; 301 } else { 302 // Find the new wheel distances. 303 var wheelLerp = wheelPositions.interpolate(endValue.wheelPositions, t); 304 305 // Find the new gyro angle. 306 var gyroLerp = gyroAngle.interpolate(endValue.gyroAngle, t); 307 308 // Create a twist to represent the change based on the interpolated sensor inputs. 309 Twist2d twist = m_kinematics.toTwist2d(wheelPositions, wheelLerp); 310 twist.dtheta = gyroLerp.minus(gyroAngle).getRadians(); 311 312 return new InterpolationRecord(poseMeters.exp(twist), gyroLerp, wheelLerp); 313 } 314 } 315 316 @Override 317 public boolean equals(Object obj) { 318 if (this == obj) { 319 return true; 320 } 321 if (!(obj instanceof PoseEstimator.InterpolationRecord)) { 322 return false; 323 } 324 var record = (PoseEstimator<?>.InterpolationRecord) obj; 325 return Objects.equals(gyroAngle, record.gyroAngle) 326 && Objects.equals(wheelPositions, record.wheelPositions) 327 && Objects.equals(poseMeters, record.poseMeters); 328 } 329 330 @Override 331 public int hashCode() { 332 return Objects.hash(gyroAngle, wheelPositions, poseMeters); 333 } 334 } 335}