001// Copyright (c) FIRST and other WPILib contributors.
002// Open Source Software; you can modify and/or share it under the terms of
003// the WPILib BSD license file in the root directory of this project.
004
005package edu.wpi.first.math.controller;
006
007import edu.wpi.first.math.geometry.Pose2d;
008import edu.wpi.first.math.kinematics.ChassisSpeeds;
009import edu.wpi.first.math.trajectory.Trajectory;
010
011/**
012 * Ramsete is a nonlinear time-varying feedback controller for unicycle models that drives the model
013 * to a desired pose along a two-dimensional trajectory. Why would we need a nonlinear control law
014 * in addition to the linear ones we have used so far like PID? If we use the original approach with
015 * PID controllers for left and right position and velocity states, the controllers only deal with
016 * the local pose. If the robot deviates from the path, there is no way for the controllers to
017 * correct and the robot may not reach the desired global pose. This is due to multiple endpoints
018 * existing for the robot which have the same encoder path arc lengths.
019 *
020 * <p>Instead of using wheel path arc lengths (which are in the robot's local coordinate frame),
021 * nonlinear controllers like pure pursuit and Ramsete use global pose. The controller uses this
022 * extra information to guide a linear reference tracker like the PID controllers back in by
023 * adjusting the references of the PID controllers.
024 *
025 * <p>The paper "Control of Wheeled Mobile Robots: An Experimental Overview" describes a nonlinear
026 * controller for a wheeled vehicle with unicycle-like kinematics; a global pose consisting of x, y,
027 * and theta; and a desired pose consisting of x_d, y_d, and theta_d. We call it Ramsete because
028 * that's the acronym for the title of the book it came from in Italian ("Robotica Articolata e
029 * Mobile per i SErvizi e le TEcnologie").
030 *
031 * <p>See <a href="https://file.tavsys.net/control/controls-engineering-in-frc.pdf">Controls
032 * Engineering in the FIRST Robotics Competition</a> section on Ramsete unicycle controller for a
033 * derivation and analysis.
034 */
035public class RamseteController {
036  private final double m_b;
037
038  private final double m_zeta;
039
040  private Pose2d m_poseError = Pose2d.kZero;
041  private Pose2d m_poseTolerance = Pose2d.kZero;
042  private boolean m_enabled = true;
043
044  /**
045   * Construct a Ramsete unicycle controller.
046   *
047   * @param b Tuning parameter (b &gt; 0 rad²/m²) for which larger values make convergence more
048   *     aggressive like a proportional term.
049   * @param zeta Tuning parameter (0 rad⁻¹ &lt; zeta &lt; 1 rad⁻¹) for which larger values provide
050   *     more damping in response.
051   * @deprecated Use LTVUnicycleController instead.
052   */
053  @Deprecated(since = "2025", forRemoval = true)
054  public RamseteController(double b, double zeta) {
055    m_b = b;
056    m_zeta = zeta;
057  }
058
059  /**
060   * Construct a Ramsete unicycle controller. The default arguments for b and zeta of 2.0 rad²/m²
061   * and 0.7 rad⁻¹ have been well-tested to produce desirable results.
062   *
063   * @deprecated Use LTVUnicycleController instead.
064   */
065  @Deprecated(since = "2025", forRemoval = true)
066  public RamseteController() {
067    this(2.0, 0.7);
068  }
069
070  /**
071   * Returns true if the pose error is within tolerance of the reference.
072   *
073   * @return True if the pose error is within tolerance of the reference.
074   */
075  public boolean atReference() {
076    final var eTranslate = m_poseError.getTranslation();
077    final var eRotate = m_poseError.getRotation();
078    final var tolTranslate = m_poseTolerance.getTranslation();
079    final var tolRotate = m_poseTolerance.getRotation();
080    return Math.abs(eTranslate.getX()) < tolTranslate.getX()
081        && Math.abs(eTranslate.getY()) < tolTranslate.getY()
082        && Math.abs(eRotate.getRadians()) < tolRotate.getRadians();
083  }
084
085  /**
086   * Sets the pose error which is considered tolerable for use with atReference().
087   *
088   * @param poseTolerance Pose error which is tolerable.
089   */
090  public void setTolerance(Pose2d poseTolerance) {
091    m_poseTolerance = poseTolerance;
092  }
093
094  /**
095   * Returns the next output of the Ramsete controller.
096   *
097   * <p>The reference pose, linear velocity, and angular velocity should come from a drivetrain
098   * trajectory.
099   *
100   * @param currentPose The current pose.
101   * @param poseRef The desired pose.
102   * @param linearVelocityRefMeters The desired linear velocity in meters per second.
103   * @param angularVelocityRefRadiansPerSecond The desired angular velocity in radians per second.
104   * @return The next controller output.
105   */
106  public ChassisSpeeds calculate(
107      Pose2d currentPose,
108      Pose2d poseRef,
109      double linearVelocityRefMeters,
110      double angularVelocityRefRadiansPerSecond) {
111    if (!m_enabled) {
112      return new ChassisSpeeds(linearVelocityRefMeters, 0.0, angularVelocityRefRadiansPerSecond);
113    }
114
115    m_poseError = poseRef.relativeTo(currentPose);
116
117    // Aliases for equation readability
118    final double eX = m_poseError.getX();
119    final double eY = m_poseError.getY();
120    final double eTheta = m_poseError.getRotation().getRadians();
121    final double vRef = linearVelocityRefMeters;
122    final double omegaRef = angularVelocityRefRadiansPerSecond;
123
124    // k = 2ζ√(ω_ref² + b v_ref²)
125    double k = 2.0 * m_zeta * Math.sqrt(Math.pow(omegaRef, 2) + m_b * Math.pow(vRef, 2));
126
127    // v_cmd = v_ref cos(e_θ) + k e_x
128    // ω_cmd = ω_ref + k e_θ + b v_ref sinc(e_θ) e_y
129    return new ChassisSpeeds(
130        vRef * m_poseError.getRotation().getCos() + k * eX,
131        0.0,
132        omegaRef + k * eTheta + m_b * vRef * sinc(eTheta) * eY);
133  }
134
135  /**
136   * Returns the next output of the Ramsete controller.
137   *
138   * <p>The reference pose, linear velocity, and angular velocity should come from a drivetrain
139   * trajectory.
140   *
141   * @param currentPose The current pose.
142   * @param desiredState The desired pose, linear velocity, and angular velocity from a trajectory.
143   * @return The next controller output.
144   */
145  public ChassisSpeeds calculate(Pose2d currentPose, Trajectory.State desiredState) {
146    return calculate(
147        currentPose,
148        desiredState.poseMeters,
149        desiredState.velocityMetersPerSecond,
150        desiredState.velocityMetersPerSecond * desiredState.curvatureRadPerMeter);
151  }
152
153  /**
154   * Enables and disables the controller for troubleshooting purposes.
155   *
156   * @param enabled If the controller is enabled or not.
157   */
158  public void setEnabled(boolean enabled) {
159    m_enabled = enabled;
160  }
161
162  /**
163   * Returns sin(x) / x.
164   *
165   * @param x Value of which to take sinc(x).
166   */
167  private static double sinc(double x) {
168    if (Math.abs(x) < 1e-9) {
169      return 1.0 - 1.0 / 6.0 * x * x;
170    } else {
171      return Math.sin(x) / x;
172    }
173  }
174}